Predicted Trait | |
Reported Trait | Platelet crit |
Mapped Trait(s) | platelet crit (EFO_0007985) |
Additional Trait Information | https://biobankengine.stanford.edu/RIVAS_HG19/snpnet/INI30090 |
Score Construction | |
PGS Name | GBE_INI30090 |
Development Method | |
Name | snpnet |
Parameters | NR |
Variants | |
Original Genome Build | GRCh37 |
Number of Variants | 20,910 |
Effect Weight Type | NR |
PGS Source | |
PGS Catalog Publication (PGP) ID | PGP000244 |
Citation (link to publication) | Tanigawa Y et al. PLoS Genet (2022) |
Ancestry Distribution | |
Score Development/Training | European: 100% 262,211 individuals (100%) |
PGS Evaluation | European: 40% African: 20% East Asian: 20% South Asian: 20% 5 Sample Sets |
Study Identifiers | Sample Numbers | Sample Ancestry | Cohort(s) | Phenotype Definitions & Methods | Age of Study Participants | Participant Follow-up Time | Additional Ancestry Description | Additional Sample/Cohort Information |
---|---|---|---|---|---|---|---|---|
— | 262,211 individuals | European | UKB | — | — | — | white British ancestry | Training + validation cohort (train_val) |
PGS Performance Metric ID (PPM) |
PGS Sample Set ID (PSS) |
Performance Source | Trait |
PGS Effect Sizes (per SD change) |
Classification Metrics | Other Metrics | Covariates Included in the Model |
PGS Performance: Other Relevant Information |
---|---|---|---|---|---|---|---|---|
PPM007040 | PSS006951| African Ancestry| 6,139 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Platelet crit | — | — | R²: 0.1382 [0.12263, 0.15377] Incremental R2 (full-covars): 0.02064 PGS R2 (no covariates): 0.0286 [0.02062, 0.03659] |
age, sex, UKB array type, Genotype PCs | — |
PPM007041 | PSS006952| East Asian Ancestry| 1,655 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Platelet crit | — | — | R²: 0.15738 [0.1257, 0.18906] Incremental R2 (full-covars): 0.08366 PGS R2 (no covariates): 0.07725 [0.05295, 0.10155] |
age, sex, UKB array type, Genotype PCs | — |
PPM007042 | PSS006953| European Ancestry| 24,171 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Platelet crit | — | — | R²: 0.23874 [0.2295, 0.24797] Incremental R2 (full-covars): 0.16467 PGS R2 (no covariates): 0.16697 [0.15852, 0.17543] |
age, sex, UKB array type, Genotype PCs | — |
PPM007043 | PSS006954| South Asian Ancestry| 7,519 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Platelet crit | — | — | R²: 0.23898 [0.2225, 0.25545] Incremental R2 (full-covars): 0.10472 PGS R2 (no covariates): 0.10873 [0.09572, 0.12174] |
age, sex, UKB array type, Genotype PCs | — |
PPM007044 | PSS006955| European Ancestry| 65,601 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Platelet crit | — | — | R²: 0.24748 [0.24183, 0.25313] Incremental R2 (full-covars): 0.16016 PGS R2 (no covariates): 0.16141 [0.15632, 0.16649] |
age, sex, UKB array type, Genotype PCs | — |
PGS Sample Set ID (PSS) |
Phenotype Definitions and Methods | Participant Follow-up Time | Sample Numbers | Age of Study Participants | Sample Ancestry | Additional Ancestry Description | Cohort(s) | Additional Sample/Cohort Information |
---|---|---|---|---|---|---|---|---|
PSS006951 | — | — | 6,139 individuals | — | African unspecified | — | UKB | — |
PSS006952 | — | — | 1,655 individuals | — | East Asian | — | UKB | — |
PSS006953 | — | — | 24,171 individuals | — | European | non-white British ancestry | UKB | — |
PSS006954 | — | — | 7,519 individuals | — | South Asian | — | UKB | — |
PSS006955 | — | — | 65,601 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |