Experimental Factor Ontology (EFO) Information | |
Identifier | EFO_0004337 |
Description | The ability to learn and to deal with new situations and to deal effectively with tasks involving abstractions. | Trait category |
Biological process
|
Synonyms |
3 synonyms
|
Mapped terms |
2 mapped terms
|
Polygenic Score ID & Name | PGS Publication ID (PGP) | Reported Trait | Mapped Trait(s) (Ontology) | Number of Variants |
Ancestry distribution GWAS Dev Eval |
Scoring File (FTP Link) |
---|---|---|---|---|---|---|
PGS001232 (GBE_INI20016) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Fluid intelligence score | intelligence | 10,055 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001232/ScoringFiles/PGS001232.txt.gz |
PGS001919 (portability-PLR_fluid_intelligence) |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Fluid intelligence score | intelligence | 26,145 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001919/ScoringFiles/PGS001919.txt.gz |
PGS002135 (portability-ldpred2_fluid_intelligence) |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Fluid intelligence score | intelligence | 903,259 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002135/ScoringFiles/PGS002135.txt.gz |
PGS003510 (cont-decay-fluid_intelligence) |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Fluid intelligence score | intelligence | 979,739 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003510/ScoringFiles/PGS003510.txt.gz |
PGS003724 (IQ) |
PGP000465 | Hatoum AS et al. Biol Psychiatry (2022) |
Intelligence quotient | intelligence | 6,683,248 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003724/ScoringFiles/PGS003724.txt.gz |
PGS004427 (X20016.score) |
PGP000561 | Jung H et al. Commun Biol (2024) |
Fluid intelligence score | intelligence | 1,059,939 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004427/ScoringFiles/PGS004427.txt.gz |
PGS Performance Metric ID (PPM) |
Evaluated Score |
PGS Sample Set ID (PSS) |
Performance Source | Trait |
PGS Effect Sizes (per SD change) |
Classification Metrics | Other Metrics | Covariates Included in the Model |
PGS Performance: Other Relevant Information |
---|---|---|---|---|---|---|---|---|---|
PPM008669 | PGS001232 (GBE_INI20016) |
PSS004891| African Ancestry| 3,281 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | R²: 0.01453 [0.00875, 0.0203] Incremental R2 (full-covars): -0.01682 PGS R2 (no covariates): 0.00026 [-0.00053, 0.00105] |
age, sex, UKB array type, Genotype PCs | — |
PPM008670 | PGS001232 (GBE_INI20016) |
PSS004892| East Asian Ancestry| 716 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | R²: 0.06194 [0.03982, 0.08407] Incremental R2 (full-covars): -0.023 PGS R2 (no covariates): 0.00235 [-0.00223, 0.00694] |
age, sex, UKB array type, Genotype PCs | — |
PPM008671 | PGS001232 (GBE_INI20016) |
PSS004893| European Ancestry| 10,867 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | R²: 0.12663 [0.11891, 0.13435] Incremental R2 (full-covars): 0.02765 PGS R2 (no covariates): 0.03358 [0.02918, 0.03797] |
age, sex, UKB array type, Genotype PCs | — |
PPM008672 | PGS001232 (GBE_INI20016) |
PSS004894| South Asian Ancestry| 3,933 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | R²: 0.04498 [0.03601, 0.05394] Incremental R2 (full-covars): 0.01256 PGS R2 (no covariates): 0.01775 [0.01195, 0.02354] |
age, sex, UKB array type, Genotype PCs | — |
PPM008673 | PGS001232 (GBE_INI20016) |
PSS004895| European Ancestry| 27,171 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | R²: 0.06613 [0.0625, 0.06975] Incremental R2 (full-covars): 0.0502 PGS R2 (no covariates): 0.05073 [0.0475, 0.05395] |
age, sex, UKB array type, Genotype PCs | — |
PPM010231 | PGS001919 (portability-PLR_fluid_intelligence) |
PSS009406| European Ancestry| 5,092 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1628 [0.1359, 0.1895] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010232 | PGS001919 (portability-PLR_fluid_intelligence) |
PSS009180| European Ancestry| 984 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.0669 [0.0038, 0.1295] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010233 | PGS001919 (portability-PLR_fluid_intelligence) |
PSS008734| European Ancestry| 1,846 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1731 [0.1282, 0.2172] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010235 | PGS001919 (portability-PLR_fluid_intelligence) |
PSS008286| South Asian Ancestry| 653 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1605 [0.0836, 0.2354] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010236 | PGS001919 (portability-PLR_fluid_intelligence) |
PSS008063| East Asian Ancestry| 345 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.0626 [-0.0465, 0.1703] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010237 | PGS001919 (portability-PLR_fluid_intelligence) |
PSS007850| African Ancestry| 266 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1082 [-0.0171, 0.2302] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010238 | PGS001919 (portability-PLR_fluid_intelligence) |
PSS008954| African Ancestry| 323 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.0768 [-0.0362, 0.1879] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010234 | PGS001919 (portability-PLR_fluid_intelligence) |
PSS008508| Greater Middle Eastern Ancestry| 158 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1171 [-0.051, 0.2788] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011938 | PGS002135 (portability-ldpred2_fluid_intelligence) |
PSS008954| African Ancestry| 323 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.0494 [-0.0636, 0.1612] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011931 | PGS002135 (portability-ldpred2_fluid_intelligence) |
PSS009406| European Ancestry| 5,092 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1998 [0.1733, 0.2261] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011932 | PGS002135 (portability-ldpred2_fluid_intelligence) |
PSS009180| European Ancestry| 984 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1048 [0.0419, 0.1668] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011933 | PGS002135 (portability-ldpred2_fluid_intelligence) |
PSS008734| European Ancestry| 1,846 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1987 [0.1542, 0.2423] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011934 | PGS002135 (portability-ldpred2_fluid_intelligence) |
PSS008508| Greater Middle Eastern Ancestry| 158 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.0685 [-0.0997, 0.233] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011935 | PGS002135 (portability-ldpred2_fluid_intelligence) |
PSS008286| South Asian Ancestry| 653 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1703 [0.0936, 0.245] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011936 | PGS002135 (portability-ldpred2_fluid_intelligence) |
PSS008063| East Asian Ancestry| 345 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1364 [0.0281, 0.2416] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011937 | PGS002135 (portability-ldpred2_fluid_intelligence) |
PSS007850| African Ancestry| 266 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Fluid intelligence score | — | — | Partial Correlation (partial-r): 0.1361 [0.0112, 0.2568] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM017438 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010872| European Ancestry| 5,148 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.06 | sex, age, deprivation index, PC1-16 | — |
PPM017522 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010788| European Ancestry| 983 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.01 | sex, age, deprivation index, PC1-16 | — |
PPM017606 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010620| European Ancestry| 1,785 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.04 | sex, age, deprivation index, PC1-16 | — |
PPM017690 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010536| Greater Middle Eastern Ancestry| 158 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.0 | sex, age, deprivation index, PC1-16 | — |
PPM017774 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010200| European Ancestry| 799 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.05 | sex, age, deprivation index, PC1-16 | — |
PPM017858 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010452| South Asian Ancestry| 652 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.03 | sex, age, deprivation index, PC1-16 | — |
PPM017942 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010368| East Asian Ancestry| 345 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.01 | sex, age, deprivation index, PC1-16 | — |
PPM018026 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010284| African Ancestry| 266 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.01 | sex, age, deprivation index, PC1-16 | — |
PPM018110 | PGS003510 (cont-decay-fluid_intelligence) |
PSS010704| African Ancestry| 322 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Fluid intelligence score | — | — | partial-R2: 0.0 | sex, age, deprivation index, PC1-16 | — |
PPM018418 | PGS003724 (IQ) |
PSS010959| European Ancestry| 916 individuals |
PGP000465 | Hatoum AS et al. Biol Psychiatry (2022) |
Reported Trait: Intelligence quotient | β: 0.149 | — | R²: 0.121 | PCs1-10, genotyping batch, cEF PGS | cEF and IQ were genetically correlated (0.61) so were used as covariates in the PGS prediction model. |
PPM020542 | PGS004427 (X20016.score) |
PSS011364| European Ancestry| 56,192 individuals |
PGP000561 | Jung H et al. Commun Biol (2024) |
Reported Trait: Fluid intelligence score | — | — | PGS R2 (no covariates): 0.22342 | — | — |
PGS Sample Set ID (PSS) |
Phenotype Definitions and Methods | Participant Follow-up Time | Sample Numbers | Age of Study Participants | Sample Ancestry | Additional Ancestry Description | Cohort(s) | Additional Sample/Cohort Information |
---|---|---|---|---|---|---|---|---|
PSS010788 | — | — | 983 individuals, 35.0 % Male samples |
Mean = 54.1 years Sd = 7.4 years |
European | Polish | UKB | — |
PSS010536 | — | — | 158 individuals, 56.0 % Male samples |
Mean = 54.5 years Sd = 7.6 years |
Greater Middle Eastern (Middle Eastern, North African or Persian) | Iranian | UKB | — |
PSS010284 | — | — | 266 individuals, 34.0 % Male samples |
Mean = 50.4 years Sd = 7.1 years |
African American or Afro-Caribbean | Caribbean | UKB | — |
PSS009180 | — | — | 984 individuals | — | European | Poland (NE Europe) | UKB | — |
PSS008286 | — | — | 653 individuals | — | South Asian | India (South Asia) | UKB | — |
PSS010704 | — | — | 322 individuals, 47.0 % Male samples |
Mean = 50.6 years Sd = 7.4 years |
African unspecified | Nigerian | UKB | — |
PSS008954 | — | — | 323 individuals | — | African unspecified | Nigeria (West Africa) | UKB | — |
PSS010452 | — | — | 652 individuals, 54.0 % Male samples |
Mean = 52.5 years Sd = 8.3 years |
South Asian | Indian | UKB | — |
PSS010200 | — | — | 799 individuals, 43.0 % Male samples |
Mean = 57.7 years Sd = 6.9 years |
European | Ashkenazi | UKB | — |
PSS008063 | — | — | 345 individuals | — | East Asian | China (East Asia) | UKB | — |
PSS010959 | — | — | 916 individuals | — | European | — | COL_Twin | — |
PSS008734 | — | — | 1,846 individuals | — | European | Italy (South Europe) | UKB | — |
PSS010872 | — | — | 5,148 individuals, 46.0 % Male samples |
Mean = 56.4 years Sd = 7.6 years |
European | white British | UKB | — |
PSS011364 | — | — | 56,192 individuals | — | European | — | UKB | — |
PSS010620 | — | — | 1,785 individuals, 42.0 % Male samples |
Mean = 54.1 years Sd = 8.1 years |
European | Italian | UKB | — |
PSS004891 | — | — | 3,281 individuals | — | African unspecified | — | UKB | — |
PSS004892 | — | — | 716 individuals | — | East Asian | — | UKB | — |
PSS004893 | — | — | 10,867 individuals | — | European | non-white British ancestry | UKB | — |
PSS004894 | — | — | 3,933 individuals | — | South Asian | — | UKB | — |
PSS004895 | — | — | 27,171 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS010368 | — | — | 345 individuals, 27.0 % Male samples |
Mean = 52.1 years Sd = 7.6 years |
East Asian | Chinese | UKB | — |
PSS007850 | — | — | 266 individuals | — | African American or Afro-Caribbean | Carribean | UKB | — |
PSS008508 | — | — | 158 individuals | — | Greater Middle Eastern (Middle Eastern, North African or Persian) | Iran (Middle East) | UKB | — |
PSS009406 | — | — | 5,092 individuals | — | European | UK (+ Ireland) | UKB | — |