PGS Publication: PGP000366

Publication Information (EuropePMC)
Title Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
PubMed ID 36575460(Europe PMC)
doi 10.1186/s13059-022-02837-1
Publication Date Dec. 27, 2022
Journal Genome Biol
Author(s) Kanoni S, Graham SE, Wang Y, Surakka I, Ramdas S, Zhu X, Clarke SL, Bhatti KF, Vedantam S, Winkler TW, Locke AE, Marouli E, Zajac GJM, Wu KH, Ntalla I, Hui Q, Klarin D, Hilliard AT, Wang Z, Xue C, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Hwang MY, Han S, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Havulinna AS, Veturi Y, Pacheco JA, Rosenthal EA, Lingren T, Feng Q, Kullo IJ, Narita A, Takayama J, Martin HC, Hunt KA, Trivedi B, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Rasheed A, Hindy G, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graff M, Choudhury A, Sengupta D, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao JH, Matsuda F, Jang HM, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Wood AR, Ji Y, Gao Z, Haworth S, Yousri NA, Mitchell RE, Chai JF, Aadahl M, Bjerregaard AA, Yao J, Manichaikul A, Hwu CM, Hung YJ, Warren HR, Ramirez J, Bork-Jensen J, Kårhus LL, Goel A, Sabater-Lleal M, Noordam R, Mauro P, Matteo F, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Møllehave LT, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesloot TE, Bradfield JP, Ruotsalainen SE, Daw E, Zmuda JM, Mitchell JS, Fuchsberger C, Christensen H, Brody JA, Vazquez-Moreno M, Feitosa MF, Wojczynski MK, Wang Z, Preuss MH, Mangino M, Christofidou P, Verweij N, Benjamins JW, Engmann J, Tsao NL, Verma A, Slieker RC, Lo KS, Zilhao NR, Le P, Kleber ME, Delgado GE, Huo S, Ikeda DD, Iha H, Yang J, Liu J, Demirkan A, Leonard HL, Marten J, Frank M, Schmidt B, Smyth LJ, Cañadas-Garre M, Wang C, Nakatochi M, Wong A, Hutri-Kähönen N, Sim X, Xia R, Huerta-Chagoya A, Fernandez-Lopez JC, Lyssenko V, Nongmaithem SS, Bayyana S, Stringham HM, Irvin MR, Oldmeadow C, Kim HN, Ryu S, Timmers PRHJ, Arbeeva L, Dorajoo R, Lange LA, Prasad G, Lorés-Motta L, Pauper M, Long J, Li X, Theusch E, Takeuchi F, Spracklen CN, Loukola A, Bollepalli S, Warner SC, Wang YX, Wei WB, Nutile T, Ruggiero D, Sung YJ, Chen S, Liu F, Yang J, Kentistou KA, Banas B, Nardone GG, Meidtner K, Bielak LF, Smith JA, Hebbar P, Farmaki AE, Hofer E, Lin M, Concas MP, Vaccargiu S, van der Most PJ, Pitkänen N, Cade BE, van der Laan SW, Chitrala KN, Weiss S, Bentley AR, Doumatey AP, Adeyemo AA, Lee JY, Petersen ERB, Nielsen AA, Choi HS, Nethander M, Freitag-Wolf S, Southam L, Rayner NW, Wang CA, Lin SY, Wang JS, Couture C, Lyytikäinen LP, Nikus K, Cuellar-Partida G, Vestergaard H, Hidalgo B, Giannakopoulou O, Cai Q, Obura MO, van Setten J, Li X, Liang J, Tang H, Terzikhan N, Shin JH, Jackson RD, Reiner AP, Martin LW, Chen Z, Li L, Kawaguchi T, Thiery J, Bis JC, Launer LJ, Li H, Nalls MA, Raitakari OT, Ichihara S, Wild SH, Nelson CP, Campbell H, Jäger S, Nabika T, Al-Mulla F, Niinikoski H, Braund PS, Kolcic I, Kovacs P, Giardoglou T, Katsuya T, de Kleijn D, de Borst GJ, Kim EK, Adams HHH, Ikram MA, Zhu X, Asselbergs FW, Kraaijeveld AO, Beulens JWJ, Shu XO, Rallidis LS, Pedersen O, Hansen T, Mitchell P, Hewitt AW, Kähönen M, Pérusse L, Bouchard C, Tönjes A, Chen YI, Pennell CE, Mori TA, Lieb W, Franke A, Ohlsson C, Mellström D, Cho YS, Lee H, Yuan JM, Koh WP, Rhee SY, Woo JT, Heid IM, Stark KJ, Zimmermann ME, Völzke H, Homuth G, Evans MK, Zonderman AB, Polasek O, Pasterkamp G, Hoefer IE, Redline S, Pahkala K, Oldehinkel AJ, Snieder H, Biino G, Schmidt R, Schmidt H, Bandinelli S, Dedoussis G, Thanaraj TA, Kardia SLR, Peyser PA, Kato N, Schulze MB, Girotto G, Böger CA, Jung B, Joshi PK, Bennett DA, De Jager PL, Lu X, Mamakou V, Brown M, Caulfield MJ, Munroe PB, Guo X, Ciullo M, Jonas JB, Samani NJ, Kaprio J, Pajukanta P, Tusié-Luna T, Aguilar-Salinas CA, Adair LS, Bechayda SA, de Silva HJ, Wickremasinghe AR, Krauss RM, Wu JY, Zheng W, Hollander AI, Bharadwaj D, Correa A, Wilson JG, Lind L, Heng CK, Nelson AE, Golightly YM, Wilson JF, Penninx B, Kim HL, Attia J, Scott RJ, Rao DC, Arnett DK, Hunt SC, Walker M, Koistinen HA, Chandak GR, Mercader JM, Costanzo MC, Jang D, Burtt NP, Villalpando CG, Orozco L, Fornage M, Tai E, van Dam RM, Lehtimäki T, Chaturvedi N, Yokota M, Liu J, Reilly DF, McKnight AJ, Kee F, Jöckel KH, McCarthy MI, Palmer CNA, Vitart V, Hayward C, Simonsick E, van Duijn CM, Jin ZB, Qu J, Hishigaki H, Lin X, März W, Gudnason V, Tardif JC, Lettre G, Hart LM', Elders PJM, Damrauer SM, Kumari M, Kivimaki M, van der Harst P, Spector TD, Loos RJF, Province MA, Parra EJ, Cruz M, Psaty BM, Brandslund I, Pramstaller PP, Rotimi CN, Christensen K, Ripatti S, Widén E, Hakonarson H, Grant SFA, Kiemeney LALM, de Graaf J, Loeffler M, Kronenberg F, Gu D, Erdmann J, Schunkert H, Franks PW, Linneberg A, Jukema JW, Khera AV, Männikkö M, Jarvelin MR, Kutalik Z, Francesco C, Mook-Kanamori DO, van Dijk KW, Watkins H, Strachan DP, Grarup N, Sever P, Poulter N, Chuang LM, Rotter JI, Dantoft TM, Karpe F, Neville MJ, Timpson NJ, Cheng CY, Wong TY, Khor CC, Li H, Sabanayagam C, Peters A, Gieger C, Hattersley AT, Pedersen NL, Magnusson PKE, Boomsma DI, Willemsen AHM, Cupples L, van Meurs JBJ, Ghanbari M, Gordon-Larsen P, Huang W, Kim YJ, Tabara Y, Wareham NJ, Langenberg C, Zeggini E, Kuusisto J, Laakso M, Ingelsson E, Abecasis G, Chambers JC, Kooner JS, de Vries PS, Morrison AC, Hazelhurst S, Ramsay M, North KE, Daviglus M, Kraft P, Martin NG, Whitfield JB, Abbas S, Saleheen D, Walters RG, Holmes MV, Black C, Smith BH, Baras A, Justice AE, Buring JE, Ridker PM, Chasman DI, Kooperberg C, Tamiya G, Yamamoto M, van Heel DA, Trembath RC, Wei WQ, Jarvik GP, Namjou B, Hayes MG, Ritchie MD, Jousilahti P, Salomaa V, Hveem K, Åsvold BO, Kubo M, Kamatani Y, Okada Y, Murakami Y, Kim BJ, Thorsteinsdottir U, Stefansson K, Zhang J, Chen Y, Ho YL, Lynch JA, Rader DJ, Tsao PS, Chang KM, Cho K, O'Donnell CJ, Gaziano JM, Wilson PWF, Frayling TM, Hirschhorn JN, Kathiresan S, Mohlke KL, Sun YV, Morris AP, Boehnke M, Brown CD, Natarajan P, Deloukas P, Willer CJ, Assimes TL, Peloso GM.
Released in PGS Catalog: Dec. 6, 2022

Associated Polygenic Score(s)

Filter PGS by Participant Ancestry
Individuals included in:
G - Source of Variant Associations (GWAS)
D - Score Development/Training
E - PGS Evaluation
List of ancestries includes:
Display options:
Ancestry legend
Multi-ancestry (including European)
Multi-ancestry (excluding European)
African
East Asian
South Asian
Additional Asian Ancestries
European
Greater Middle Eastern
Hispanic or Latin American
Additional Diverse Ancestries
Not Reported

PGS Developed By This Publication

Polygenic Score ID & Name PGS Publication ID (PGP) Reported Trait Mapped Trait(s) (Ontology) Number of Variants Ancestry distribution
GWAS
Dev
Eval
Scoring File (FTP Link)
PGS002784
(GLGC_2021_ALL_logTG_PRS_weights_PT)
PGP000366 |
Kanoni S et al. Genome Biol (2022)
Triglycerides triglyceride measurement 30,071
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002784/ScoringFiles/PGS002784.txt.gz
PGS002782
(GLGC_2021_ALL_nonHDL_PRS_weights_PRS-CS)
PGP000366 |
Kanoni S et al. Genome Biol (2022)
nonHDL Cholesterol non-high density lipoprotein cholesterol measurement 1,239,184
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002782/ScoringFiles/PGS002782.txt.gz
PGS002781
(GLGC_2021_ALL_HDL_PRS_weights_PRS-CS)
PGP000366 |
Kanoni S et al. Genome Biol (2022)
HDL cholesterol high density lipoprotein cholesterol measurement 1,239,184
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002781/ScoringFiles/PGS002781.txt.gz
PGS002783
(GLGC_2021_ALL_TC_PRS_weights_PT)
PGP000366 |
Kanoni S et al. Genome Biol (2022)
Total cholesterol total cholesterol measurement 10,699
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002783/ScoringFiles/PGS002783.txt.gz

Performance Metrics

Disclaimer: The performance metrics are displayed as reported by the source studies. It is important to note that metrics are not necessarily comparable with each other. For example, metrics depend on the sample characteristics (described by the PGS Catalog Sample Set [PSS] ID), phenotyping, and statistical modelling. Please refer to the source publication for additional guidance on performance.

PGS Performance
Metric ID (PPM)
Evaluated Score PGS Sample Set ID
(PSS)
Performance Source Trait PGS Effect Sizes
(per SD change)
Classification Metrics Other Metrics Covariates Included in the Model PGS Performance:
Other Relevant Information
PPM016161 PGS002781
(GLGC_2021_ALL_HDL_PRS_weights_PRS-CS)
PSS010052|
Multi-ancestry (including European)|
461,918 individuals
PGP000366 |
Kanoni S et al. Genome Biol (2022)
Reported Trait: Baseline HDL cholesterol : 0.13 sex, batch, age at initial assessment, PCs1-4
PPM016162 PGS002782
(GLGC_2021_ALL_nonHDL_PRS_weights_PRS-CS)
PSS010052|
Multi-ancestry (including European)|
461,918 individuals
PGP000366 |
Kanoni S et al. Genome Biol (2022)
Reported Trait: Baseline nonHDL cholesterol : 0.14 sex, batch, age at initial assessment, PCs1-4
PPM016163 PGS002783
(GLGC_2021_ALL_TC_PRS_weights_PT)
PSS010052|
Multi-ancestry (including European)|
461,918 individuals
PGP000366 |
Kanoni S et al. Genome Biol (2022)
Reported Trait: Baseline Total cholesterol : 0.14 sex, batch, age at initial assessment, PCs1-4
PPM016164 PGS002784
(GLGC_2021_ALL_logTG_PRS_weights_PT)
PSS010052|
Multi-ancestry (including European)|
461,918 individuals
PGP000366 |
Kanoni S et al. Genome Biol (2022)
Reported Trait: Baseline Triglycerides : 0.1 sex, batch, age at initial assessment, PCs1-4

Evaluated Samples

PGS Sample Set ID
(PSS)
Phenotype Definitions and Methods Participant Follow-up Time Sample Numbers Age of Study Participants Sample Ancestry Additional Ancestry Description Cohort(s) Additional Sample/Cohort Information
PSS010052 461,918 individuals European, African unspecified, East Asian, South Asian UKB