Experimental Factor Ontology (EFO) Information | |
Identifier | EFO_0004574 |
Description | A total cholesterol measurement is the quantification of cholesterol in blood, total cholesterol is defined as the sum of HDL, LDL, and VLDL. | Trait category |
Lipid or lipoprotein measurement
|
Synonyms |
2 synonyms
|
Mapped term | SNOMEDCT:121868005 |
Polygenic Score ID & Name | PGS Publication ID (PGP) | Reported Trait | Mapped Trait(s) (Ontology) | Number of Variants |
Ancestry distribution GWAS Dev Eval |
Scoring File (FTP Link) |
---|---|---|---|---|---|---|
PGS000062 (GRS_TC) |
PGP000045 | Johnson L et al. PLoS One (2015) |
Total cholesterol | total cholesterol measurement | 52 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000062/ScoringFiles/PGS000062.txt.gz |
PGS000311 (GRS234_TC) |
PGP000092 | Xie T et al. Circ Genom Precis Med (2020) |
Total cholesterol | total cholesterol measurement | 234 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000311/ScoringFiles/PGS000311.txt.gz |
PGS000658 (PRS-TC) |
PGP000121 | Tam CHT et al. Genome Med (2021) |
Total cholesterol | total cholesterol measurement | 229 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000658/ScoringFiles/PGS000658.txt.gz | |
PGS000677 (snpnet.Cholesterol_adjstatins) |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Cholesterol [mmol/L] (statin adjusted) | total cholesterol measurement | 17,204 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000677/ScoringFiles/PGS000677.txt.gz |
PGS000831 (Total_cholesterol_PGS) |
PGP000210 | Zubair N et al. Sci Rep (2019) |
Total cholesterol | total cholesterol measurement | 1,032 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000831/ScoringFiles/PGS000831.txt.gz |
PGS001895 (portability-PLR_cholesterol) |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Cholesterol | total cholesterol measurement | 16,576 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001895/ScoringFiles/PGS001895.txt.gz |
PGS002108 (portability-ldpred2_cholesterol) |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Cholesterol | total cholesterol measurement | 451,160 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002108/ScoringFiles/PGS002108.txt.gz |
PGS002286 (GRS_286_TC) |
PGP000313 | Kamiza AB et al. Nat Med (2022) |
Total cholesterol | total cholesterol measurement | 286 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002286/ScoringFiles/PGS002286.txt.gz | |
PGS002352 (biochemistry_Cholesterol.BOLT-LMM) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 1,109,311 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002352/ScoringFiles/PGS002352.txt.gz |
PGS002377 (biochemistry_Cholesterol.BOLT-LMM-BBJ) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 920,922 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002377/ScoringFiles/PGS002377.txt.gz |
PGS002424 (biochemistry_Cholesterol.P+T.0.0001) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 8,526 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002424/ScoringFiles/PGS002424.txt.gz |
PGS002473 (biochemistry_Cholesterol.P+T.0.001) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 22,547 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002473/ScoringFiles/PGS002473.txt.gz |
PGS002522 (biochemistry_Cholesterol.P+T.0.01) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 109,026 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002522/ScoringFiles/PGS002522.txt.gz |
PGS002571 (biochemistry_Cholesterol.P+T.1e-06) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 3,573 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002571/ScoringFiles/PGS002571.txt.gz |
PGS002620 (biochemistry_Cholesterol.P+T.5e-08) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 2,571 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002620/ScoringFiles/PGS002620.txt.gz |
PGS002669 (biochemistry_Cholesterol.PolyFun-pred) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 309,475 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002669/ScoringFiles/PGS002669.txt.gz |
PGS002718 (biochemistry_Cholesterol.SBayesR) |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Total cholesterol | total cholesterol measurement | 977,049 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002718/ScoringFiles/PGS002718.txt.gz |
PGS002783 (GLGC_2021_ALL_TC_PRS_weights_PT) |
PGP000366 | Kanoni S et al. Genome Biol (2022) |
Total cholesterol | total cholesterol measurement | 10,699 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002783/ScoringFiles/PGS002783.txt.gz |
PGS003134 (ExPRSweb_TC_30690-irnt_LASSOSUM_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 585,328 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003134/ScoringFiles/PGS003134.txt.gz | |
PGS003135 (ExPRSweb_TC_30690-irnt_PT_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 2,822 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003135/ScoringFiles/PGS003135.txt.gz | |
PGS003136 (ExPRSweb_TC_30690-irnt_PLINK_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 3,566 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003136/ScoringFiles/PGS003136.txt.gz | |
PGS003137 (ExPRSweb_TC_30690-irnt_DBSLMM_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 7,459,292 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003137/ScoringFiles/PGS003137.txt.gz | |
PGS003138 (ExPRSweb_TC_30690-irnt_PRSCS_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 1,113,831 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003138/ScoringFiles/PGS003138.txt.gz | |
PGS003139 (ExPRSweb_TC_30690-raw_LASSOSUM_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 569,518 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003139/ScoringFiles/PGS003139.txt.gz | |
PGS003140 (ExPRSweb_TC_30690-raw_PT_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 2,863 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003140/ScoringFiles/PGS003140.txt.gz | |
PGS003141 (ExPRSweb_TC_30690-raw_PLINK_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 3,604 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003141/ScoringFiles/PGS003141.txt.gz | |
PGS003142 (ExPRSweb_TC_30690-raw_DBSLMM_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 7,459,288 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003142/ScoringFiles/PGS003142.txt.gz | |
PGS003143 (ExPRSweb_TC_30690-raw_PRSCS_MGI_20211120) |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Total cholesterol | total cholesterol measurement | 1,113,831 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003143/ScoringFiles/PGS003143.txt.gz | |
PGS003341 (CVGRS_TC) |
PGP000405 | Kim YJ et al. Nat Commun (2022) |
Total cholesterol | total cholesterol measurement | 91 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003341/ScoringFiles/PGS003341.txt.gz |
PGS003350 (ALLGRS_TC) |
PGP000405 | Kim YJ et al. Nat Commun (2022) |
Total cholesterol | total cholesterol measurement | 102 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003350/ScoringFiles/PGS003350.txt.gz |
PGS003481 (LDPred2_TC) |
PGP000456 | Zhang Y et al. EBioMedicine (2022) |
Total cholesterol | total cholesterol measurement | 842,513 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003481/ScoringFiles/PGS003481.txt.gz |
PGS003495 (cont-decay-cholesterol) |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Cholesterol | total cholesterol measurement | 979,739 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003495/ScoringFiles/PGS003495.txt.gz |
PGS003818 (TC_EUR_CT) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 4,691 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003818/ScoringFiles/PGS003818.txt.gz | |
PGS003819 (TC_EUR_LDpred2) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,490,151 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003819/ScoringFiles/PGS003819.txt.gz | |
PGS003820 (TC_AFR_CT) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 218 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003820/ScoringFiles/PGS003820.txt.gz | |
PGS003821 (TC_AFR_LDpred2) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,687,775 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003821/ScoringFiles/PGS003821.txt.gz | |
PGS003822 (TC_AFR_weighted_LDpred2) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,687,775 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003822/ScoringFiles/PGS003822.txt.gz | |
PGS003823 (TC_AFR_PRSCSx) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,155,228 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003823/ScoringFiles/PGS003823.txt.gz | |
PGS003824 (TC_AFR_CTSLEB) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,122,865 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003824/ScoringFiles/PGS003824.txt.gz | |
PGS003825 (TC_EAS_CT) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 230 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003825/ScoringFiles/PGS003825.txt.gz | |
PGS003826 (TC_EAS_LDpred2) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 820,996 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003826/ScoringFiles/PGS003826.txt.gz | |
PGS003827 (TC_EAS_weighted_LDpred2) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 820,996 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003827/ScoringFiles/PGS003827.txt.gz | |
PGS003828 (TC_EAS_PRSCSx) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,155,228 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003828/ScoringFiles/PGS003828.txt.gz | |
PGS003829 (TC_EAS_CTSLEB) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 431,780 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003829/ScoringFiles/PGS003829.txt.gz | |
PGS003830 (TC_SAS_CT) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 32 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003830/ScoringFiles/PGS003830.txt.gz | |
PGS003831 (TC_SAS_LDpred2) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,468,958 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003831/ScoringFiles/PGS003831.txt.gz | |
PGS003832 (TC_SAS_weighted_LDpred2) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,468,958 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003832/ScoringFiles/PGS003832.txt.gz | |
PGS003833 (TC_SAS_PRSCSx) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 1,155,228 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003833/ScoringFiles/PGS003833.txt.gz | |
PGS003834 (TC_SAS_CTSLEB) |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Total cholesterol | total cholesterol measurement | 770,490 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003834/ScoringFiles/PGS003834.txt.gz | |
PGS003853 (PRS60_TC) |
PGP000493 | Li J et al. JAMA Netw Open (2023) |
Total cholesterol | total cholesterol measurement | 60 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003853/ScoringFiles/PGS003853.txt.gz |
PGS004333 (X30690.score) |
PGP000561 | Jung H et al. Commun Biol (2024) |
Cholesterol (mmol/L) | total cholesterol measurement | 1,059,939 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004333/ScoringFiles/PGS004333.txt.gz |
PGS004667 (TC_AFR_lassosum2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,830 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004667/ScoringFiles/PGS004667.txt.gz | |
PGS004668 (TC_AFR_ldpred2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,691,065 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004668/ScoringFiles/PGS004668.txt.gz | |
PGS004669 (TC_AFR_PROSPER) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,728,954 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004669/ScoringFiles/PGS004669.txt.gz | |
PGS004670 (TC_AFR_weighted_lassosum2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 158,252 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004670/ScoringFiles/PGS004670.txt.gz | |
PGS004671 (TC_AFR_weighted_ldpred2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,872,229 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004671/ScoringFiles/PGS004671.txt.gz | |
PGS004672 (TC_EAS_lassosum2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 65,005 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004672/ScoringFiles/PGS004672.txt.gz | |
PGS004673 (TC_EAS_ldpred2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 823,148 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004673/ScoringFiles/PGS004673.txt.gz | |
PGS004674 (TC_EAS_PROSPER) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,728,954 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004674/ScoringFiles/PGS004674.txt.gz | |
PGS004675 (TC_EAS_weighted_lassosum2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 158,252 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004675/ScoringFiles/PGS004675.txt.gz | |
PGS004676 (TC_EAS_weighted_ldpred2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,872,229 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004676/ScoringFiles/PGS004676.txt.gz | |
PGS004677 (TC_SAS_lassosum2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 2,421 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004677/ScoringFiles/PGS004677.txt.gz | |
PGS004678 (TC_SAS_ldpred2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,471,975 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004678/ScoringFiles/PGS004678.txt.gz | |
PGS004679 (TC_SAS_PROSPER) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,728,954 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004679/ScoringFiles/PGS004679.txt.gz | |
PGS004680 (TC_SAS_weighted_lassosum2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 158,252 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004680/ScoringFiles/PGS004680.txt.gz | |
PGS004681 (TC_SAS_weighted_ldpred2) |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Total cholesterol | total cholesterol measurement | 1,872,229 | https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004681/ScoringFiles/PGS004681.txt.gz | |
PGS004841 (tc_PRSmix_eur) |
PGP000604 | Truong B et al. Cell Genom (2024) |
Total cholesterol | total cholesterol measurement | 1,051,726 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004841/ScoringFiles/PGS004841.txt.gz |
PGS004842 (tc_PRSmix_sas) |
PGP000604 | Truong B et al. Cell Genom (2024) |
Total cholesterol | total cholesterol measurement | 6,439,132 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004842/ScoringFiles/PGS004842.txt.gz |
PGS004843 (tc_PRSmixPlus_eur) |
PGP000604 | Truong B et al. Cell Genom (2024) |
Total cholesterol | total cholesterol measurement | 4,136,795 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004843/ScoringFiles/PGS004843.txt.gz |
PGS004844 (tc_PRSmixPlus_sas) |
PGP000604 | Truong B et al. Cell Genom (2024) |
Total cholesterol | total cholesterol measurement | 6,149,012 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004844/ScoringFiles/PGS004844.txt.gz |
PGS Performance Metric ID (PPM) |
Evaluated Score |
PGS Sample Set ID (PSS) |
Performance Source | Trait |
PGS Effect Sizes (per SD change) |
Classification Metrics | Other Metrics | Covariates Included in the Model |
PGS Performance: Other Relevant Information |
---|---|---|---|---|---|---|---|---|---|
PPM000159 | PGS000062 (GRS_TC) |
PSS000098| European Ancestry| 2,063 individuals |
PGP000045 | Johnson L et al. PLoS One (2015) |
Reported Trait: Serum total cholesterol (TC) levels | β: 20.69 | — | Beta (p-value): 0.0108 | age, age^2, sex, GRS_HDL, GRS_LDL, GRS_TG | Association (p-value; unadjusted for covariates) < 0.001 |
PPM000160 | PGS000062 (GRS_TC) |
PSS000097| East Asian Ancestry| 666 individuals |
PGP000045 | Johnson L et al. PLoS One (2015) |
Reported Trait: Serum total cholesterol (TC) levels | β: 8.57 | — | Beta (p-value): 0.583 | age, age^2, sex, GRS_HDL, GRS_LDL, GRS_TG | Association (p-value; unadjusted for covariates) < 0.001 |
PPM000161 | PGS000062 (GRS_TC) |
PSS000096| African Ancestry| 1,355 individuals |
PGP000045 | Johnson L et al. PLoS One (2015) |
Reported Trait: Serum total cholesterol (TC) levels | β: 1.99 | — | Beta (p-value): 0.852 | age, age^2, sex, GRS_HDL, GRS_LDL, GRS_TG | Association (p-value; unadjusted for covariates) < 0.001 |
PPM000162 | PGS000062 (GRS_TC) |
PSS000099| Hispanic or Latin American Ancestry| 1,256 individuals |
PGP000045 | Johnson L et al. PLoS One (2015) |
Reported Trait: Serum total cholesterol (TC) levels | β: -2.62 | — | Beta (p-value): 0.815 | age, age^2, sex, GRS_HDL, GRS_LDL, GRS_TG | Association (p-value; unadjusted for covariates) < 0.001 |
PPM000781 | PGS000311 (GRS234_TC) |
PSS000376| European Ancestry| 1,354 individuals |
PGP000092 | Xie T et al. Circ Genom Precis Med (2020) |
Reported Trait: Total cholesterol (mmol/l) | — | — | R²: 0.1295 | Sex, age, age^2 | — |
PPM001350 | PGS000658 (PRS-TC) |
PSS000593| East Asian Ancestry| 4,917 individuals |
PGP000121 | Tam CHT et al. Genome Med (2021) |
Reported Trait: Total cholesterol at baseline (log transformed) | β: 0.042 (0.003) | — | Pearson Correlation Coefficient (r): 0.186 Incremental R² (PRS and covariates vs. covariates-alone): 0.0393 |
age, sex, BMI, PCs | — |
PPM001351 | PGS000658 (PRS-TC) |
PSS000589| East Asian Ancestry| 1,941 individuals |
PGP000121 | Tam CHT et al. Genome Med (2021) |
Reported Trait: Total cholesterol at baseline (log transformed) | β: 0.036 (0.004) | — | Pearson Correlation Coefficient (r): 0.187 Incremental R² (PRS and covariates vs. covariates-alone): 0.0332 |
age, sex, BMI, PCs | — |
PPM001349 | PGS000658 (PRS-TC) |
PSS000587| East Asian Ancestry| 426 individuals |
PGP000121 | Tam CHT et al. Genome Med (2021) |
Reported Trait: Total cholesterol at baseline (log transformed) | β: 0.043 (0.008) | — | Pearson Correlation Coefficient (r): 0.251 Incremental R² (PRS and covariates vs. covariates-alone): 0.0506 |
age, sex, BMI, PCs | — |
PPM001352 | PGS000658 (PRS-TC) |
PSS000591| East Asian Ancestry| 865 individuals |
PGP000121 | Tam CHT et al. Genome Med (2021) |
Reported Trait: Total cholesterol at baseline (log transformed) | β: 0.034 (0.006) | — | Pearson Correlation Coefficient (r): 0.173 Incremental R² (PRS and covariates vs. covariates-alone): 0.0298 |
age, sex, BMI, PCs | — |
PPM001405 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS000662| African Ancestry| 6,014 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Cholesterol [mmol/L] (statin adjusted) | — | — | R²: 0.1282 Spearman's ρ: 0.26 |
Age, sex, PCs(1-40) | — |
PPM001440 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS000663| East Asian Ancestry| 1,082 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Cholesterol [mmol/L] (statin adjusted) | — | — | R²: 0.17187 Spearman's ρ: 0.314 |
Age, sex, PCs(1-40) | — |
PPM001475 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS000664| European Ancestry| 23,581 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Cholesterol [mmol/L] (statin adjusted) | — | — | R²: 0.26423 Spearman's ρ: 0.421 |
Age, sex, PCs(1-40) | — |
PPM001510 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS000665| South Asian Ancestry| 7,336 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Cholesterol [mmol/L] (statin adjusted) | — | — | R²: 0.1266 Spearman's ρ: 0.3 |
Age, sex, PCs(1-40) | — |
PPM001545 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS000666| European Ancestry| 63,794 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Cholesterol [mmol/L] (statin adjusted) | — | — | R²: 0.26395 Spearman's ρ: 0.429 |
Age, sex, PCs(1-40) | — |
PPM001574 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS000798| European Ancestry| 2,004 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Cholesterol [mmol/L] (statin adjusted) | — | — | Spearman's ρ: 0.173 | Age, sex | — |
PPM001573 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS000797| European Ancestry| 2,129 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Cholesterol [mmol/L] (statin adjusted) | — | — | Spearman's ρ: 0.184 | Age, sex | — |
PPM007310 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS007126| African Ancestry| 6,097 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |Ext. |
Reported Trait: Cholesterol | — | — | R²: 0.04241 [0.03283, 0.052] Incremental R2 (full-covars): 0.03032 PGS R2 (no covariates): 0.05951 [0.04835, 0.07066] |
age, sex, UKB array type, Genotype PCs | — |
PPM007311 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS007127| East Asian Ancestry| 1,616 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |Ext. |
Reported Trait: Cholesterol | — | — | R²: 0.06535 [0.04271, 0.08799] Incremental R2 (full-covars): 0.03188 PGS R2 (no covariates): 0.07616 [0.052, 0.10032] |
age, sex, UKB array type, Genotype PCs | — |
PPM007312 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS007128| European Ancestry| 23,774 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |Ext. |
Reported Trait: Cholesterol | — | — | R²: 0.07903 [0.0726, 0.08546] Incremental R2 (full-covars): 0.04607 PGS R2 (no covariates): 0.10696 [0.0997, 0.11421] |
age, sex, UKB array type, Genotype PCs | — |
PPM007313 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS007129| South Asian Ancestry| 7,426 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |Ext. |
Reported Trait: Cholesterol | — | — | R²: 0.05766 [0.04764, 0.06768] Incremental R2 (full-covars): 0.02119 PGS R2 (no covariates): 0.04196 [0.03327, 0.05065] |
age, sex, UKB array type, Genotype PCs | — |
PPM007314 | PGS000677 (snpnet.Cholesterol_adjstatins) |
PSS007130| European Ancestry| 64,473 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |Ext. |
Reported Trait: Cholesterol | — | — | R²: 0.07898 [0.07507, 0.08288] Incremental R2 (full-covars): 0.04327 PGS R2 (no covariates): 0.09873 [0.09445, 0.103] |
age, sex, UKB array type, Genotype PCs | — |
PPM002237 | PGS000831 (Total_cholesterol_PGS) |
PSS001083| Multi-ancestry (including European)| 2,531 individuals |
PGP000210 | Zubair N et al. Sci Rep (2019) |
Reported Trait: Total cholesterol | — | — | R²: 0.087 | Age at baseline, sex, enrollment channel, PCs(1-7), observation season, observation vendor | — |
PPM010043 | PGS001895 (portability-PLR_cholesterol) |
PSS009391| European Ancestry| 19,002 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.3271 [0.3143, 0.3397] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010044 | PGS001895 (portability-PLR_cholesterol) |
PSS009165| European Ancestry| 3,952 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.343 [0.3152, 0.3703] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010045 | PGS001895 (portability-PLR_cholesterol) |
PSS008719| European Ancestry| 6,326 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.3093 [0.2868, 0.3314] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010046 | PGS001895 (portability-PLR_cholesterol) |
PSS008493| Greater Middle Eastern Ancestry| 1,126 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.2914 [0.2365, 0.3444] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010047 | PGS001895 (portability-PLR_cholesterol) |
PSS008271| South Asian Ancestry| 6,001 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.2092 [0.1848, 0.2333] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010048 | PGS001895 (portability-PLR_cholesterol) |
PSS008048| East Asian Ancestry| 1,717 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.2781 [0.2336, 0.3215] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010049 | PGS001895 (portability-PLR_cholesterol) |
PSS007835| African Ancestry| 2,343 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.2749 [0.2369, 0.3121] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM010050 | PGS001895 (portability-PLR_cholesterol) |
PSS008939| African Ancestry| 3,656 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.203 [0.1716, 0.234] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011719 | PGS002108 (portability-ldpred2_cholesterol) |
PSS009391| European Ancestry| 19,002 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.3292 [0.3165, 0.3418] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011720 | PGS002108 (portability-ldpred2_cholesterol) |
PSS009165| European Ancestry| 3,952 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.3416 [0.3137, 0.3689] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011721 | PGS002108 (portability-ldpred2_cholesterol) |
PSS008719| European Ancestry| 6,326 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.3064 [0.2839, 0.3286] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011722 | PGS002108 (portability-ldpred2_cholesterol) |
PSS008493| Greater Middle Eastern Ancestry| 1,126 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.2983 [0.2437, 0.3511] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011723 | PGS002108 (portability-ldpred2_cholesterol) |
PSS008271| South Asian Ancestry| 6,001 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.215 [0.1907, 0.239] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011724 | PGS002108 (portability-ldpred2_cholesterol) |
PSS008048| East Asian Ancestry| 1,717 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.2733 [0.2287, 0.3168] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011725 | PGS002108 (portability-ldpred2_cholesterol) |
PSS007835| African Ancestry| 2,343 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.266 [0.2278, 0.3034] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011726 | PGS002108 (portability-ldpred2_cholesterol) |
PSS008939| African Ancestry| 3,656 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Cholesterol | — | — | Partial Correlation (partial-r): 0.1947 [0.1632, 0.2258] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM012985 | PGS002286 (GRS_286_TC) |
PSS009639| African Ancestry| 2,569 individuals |
PGP000313 | Kamiza AB et al. Nat Med (2022) |
Reported Trait: Total cholesterol levels | — | AUROC: 0.651 [0.631, 0.671] | R²: 0.0693 | age, sex, type 2 diabetes, PC1, PC2, PC3, PC4, PC5 | Nagelkerke’s R2 (estimate of variance explained by the PGS after covariate adjustment) |
PPM013117 | PGS002352 (biochemistry_Cholesterol.BOLT-LMM) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0522 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013166 | PGS002352 (biochemistry_Cholesterol.BOLT-LMM) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0808 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013264 | PGS002352 (biochemistry_Cholesterol.BOLT-LMM) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0474 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013215 | PGS002352 (biochemistry_Cholesterol.BOLT-LMM) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.1036 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013289 | PGS002377 (biochemistry_Cholesterol.BOLT-LMM-BBJ) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0119 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013312 | PGS002377 (biochemistry_Cholesterol.BOLT-LMM-BBJ) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0638 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013335 | PGS002377 (biochemistry_Cholesterol.BOLT-LMM-BBJ) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.008 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013358 | PGS002377 (biochemistry_Cholesterol.BOLT-LMM-BBJ) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0076 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013405 | PGS002424 (biochemistry_Cholesterol.P+T.0.0001) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0064 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013454 | PGS002424 (biochemistry_Cholesterol.P+T.0.0001) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0439 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013503 | PGS002424 (biochemistry_Cholesterol.P+T.0.0001) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.069 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013552 | PGS002424 (biochemistry_Cholesterol.P+T.0.0001) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0221 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013601 | PGS002473 (biochemistry_Cholesterol.P+T.0.001) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0004 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013650 | PGS002473 (biochemistry_Cholesterol.P+T.0.001) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0333 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013699 | PGS002473 (biochemistry_Cholesterol.P+T.0.001) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0652 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013748 | PGS002473 (biochemistry_Cholesterol.P+T.0.001) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0148 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013797 | PGS002522 (biochemistry_Cholesterol.P+T.0.01) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0006 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013846 | PGS002522 (biochemistry_Cholesterol.P+T.0.01) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.006 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013895 | PGS002522 (biochemistry_Cholesterol.P+T.0.01) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0224 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013944 | PGS002522 (biochemistry_Cholesterol.P+T.0.01) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.004 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014042 | PGS002571 (biochemistry_Cholesterol.P+T.1e-06) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.04 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014091 | PGS002571 (biochemistry_Cholesterol.P+T.1e-06) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.064 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014140 | PGS002571 (biochemistry_Cholesterol.P+T.1e-06) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0226 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM013993 | PGS002571 (biochemistry_Cholesterol.P+T.1e-06) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0255 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014238 | PGS002620 (biochemistry_Cholesterol.P+T.5e-08) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0383 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014287 | PGS002620 (biochemistry_Cholesterol.P+T.5e-08) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0615 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014336 | PGS002620 (biochemistry_Cholesterol.P+T.5e-08) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0223 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014189 | PGS002620 (biochemistry_Cholesterol.P+T.5e-08) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0312 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014385 | PGS002669 (biochemistry_Cholesterol.PolyFun-pred) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0835 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | See biochemistry_Cholesterol.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights |
PPM014483 | PGS002669 (biochemistry_Cholesterol.PolyFun-pred) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1127 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | See biochemistry_Cholesterol.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights |
PPM014532 | PGS002669 (biochemistry_Cholesterol.PolyFun-pred) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0526 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | See biochemistry_Cholesterol.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights |
PPM014434 | PGS002669 (biochemistry_Cholesterol.PolyFun-pred) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0838 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | See biochemistry_Cholesterol.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights |
PPM014581 | PGS002718 (biochemistry_Cholesterol.SBayesR) |
PSS009851| African Ancestry| 6,080 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0498 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014630 | PGS002718 (biochemistry_Cholesterol.SBayesR) |
PSS009852| East Asian Ancestry| 877 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0638 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014679 | PGS002718 (biochemistry_Cholesterol.SBayesR) |
PSS009853| European Ancestry| 41,214 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0966 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM014728 | PGS002718 (biochemistry_Cholesterol.SBayesR) |
PSS009854| South Asian Ancestry| 7,655 individuals |
PGP000332 | Weissbrod O et al. Nat Genet (2022) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (full model vs. covariates alone): 0.0413 | age, sex, age*sex, assessment center, genotyping array, 10 PCs | — |
PPM016163 | PGS002783 (GLGC_2021_ALL_TC_PRS_weights_PT) |
PSS010052| Multi-ancestry (including European)| 461,918 individuals |
PGP000366 | Kanoni S et al. Genome Biol (2022) |
Reported Trait: Baseline Total cholesterol | — | — | R²: 0.14 | sex, batch, age at initial assessment, PCs1-4 | — |
PPM016028 | PGS003134 (ExPRSweb_TC_30690-irnt_LASSOSUM_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 8.9 (0.343) | — | R²: 0.0624 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016031 | PGS003135 (ExPRSweb_TC_30690-irnt_PT_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 8.69 (0.341) | — | R²: 0.0607 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016029 | PGS003136 (ExPRSweb_TC_30690-irnt_PLINK_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 8.81 (0.339) | — | R²: 0.063 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016027 | PGS003137 (ExPRSweb_TC_30690-irnt_DBSLMM_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 8.76 (0.335) | — | R²: 0.0639 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016030 | PGS003138 (ExPRSweb_TC_30690-irnt_PRSCS_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 9.39 (0.34) | — | R²: 0.07 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016033 | PGS003139 (ExPRSweb_TC_30690-raw_LASSOSUM_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 8.78 (0.344) | — | R²: 0.0608 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016036 | PGS003140 (ExPRSweb_TC_30690-raw_PT_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 8.69 (0.341) | — | R²: 0.0608 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016034 | PGS003141 (ExPRSweb_TC_30690-raw_PLINK_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 8.82 (0.339) | — | R²: 0.0634 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016032 | PGS003142 (ExPRSweb_TC_30690-raw_DBSLMM_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 8.8 (0.335) | — | R²: 0.0643 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016035 | PGS003143 (ExPRSweb_TC_30690-raw_PRSCS_MGI_20211120) |
PSS010015| European Ancestry| 9,115 individuals |
PGP000393 | Ma Y et al. Am J Hum Genet (2022) |
Reported Trait: Total Cholesterol | β: 9.33 (0.34) | — | R²: 0.0691 | SEX,AGE,Batch,PC1,PC2,PC3,PC4 | — |
PPM016180 | PGS003341 (CVGRS_TC) |
PSS010055| East Asian Ancestry| 22,608 individuals |
PGP000405 | Kim YJ et al. Nat Commun (2022) |
Reported Trait: Total cholesterol | β: 0.28536 | — | — | — | — |
PPM016197 | PGS003341 (CVGRS_TC) |
PSS010055| East Asian Ancestry| 22,608 individuals |
PGP000405 | Kim YJ et al. Nat Commun (2022) |
Reported Trait: Type 2 diabetes | OR: 0.98882 | — | — | — | — |
PPM016189 | PGS003350 (ALLGRS_TC) |
PSS010055| East Asian Ancestry| 22,608 individuals |
PGP000405 | Kim YJ et al. Nat Commun (2022) |
Reported Trait: Total cholesterol | β: 0.29361 | — | — | — | — |
PPM017290 | PGS003481 (LDPred2_TC) |
PSS010185| Hispanic or Latin American Ancestry| 1,115 individuals |
PGP000456 | Zhang Y et al. EBioMedicine (2022) |
Reported Trait: Respiratory event index | β: 0.002 (0.01) | — | — | Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI | — |
PPM017313 | PGS003481 (LDPred2_TC) |
PSS010185| Hispanic or Latin American Ancestry| 1,115 individuals |
PGP000456 | Zhang Y et al. EBioMedicine (2022) |
Reported Trait: Obstructive sleep apnea | β: -0.024 (0.025) | — | — | Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI | — |
PPM017507 | PGS003495 (cont-decay-cholesterol) |
PSS010830| European Ancestry| 3,941 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.11 | sex, age, deprivation index, PC1-16 | — |
PPM017675 | PGS003495 (cont-decay-cholesterol) |
PSS010578| Greater Middle Eastern Ancestry| 1,097 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.08 | sex, age, deprivation index, PC1-16 | — |
PPM017759 | PGS003495 (cont-decay-cholesterol) |
PSS010242| European Ancestry| 2,237 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.07 | sex, age, deprivation index, PC1-16 | — |
PPM017843 | PGS003495 (cont-decay-cholesterol) |
PSS010494| South Asian Ancestry| 5,947 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.04 | sex, age, deprivation index, PC1-16 | — |
PPM017927 | PGS003495 (cont-decay-cholesterol) |
PSS010410| East Asian Ancestry| 1,706 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.07 | sex, age, deprivation index, PC1-16 | — |
PPM018011 | PGS003495 (cont-decay-cholesterol) |
PSS010326| African Ancestry| 2,331 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.06 | sex, age, deprivation index, PC1-16 | — |
PPM018095 | PGS003495 (cont-decay-cholesterol) |
PSS010746| African Ancestry| 3,627 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.04 | sex, age, deprivation index, PC1-16 | — |
PPM017423 | PGS003495 (cont-decay-cholesterol) |
PSS010914| European Ancestry| 19,116 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.1 | sex, age, deprivation index, PC1-16 | — |
PPM017591 | PGS003495 (cont-decay-cholesterol) |
PSS010662| European Ancestry| 6,174 individuals |
PGP000457 | Ding Y et al. bioRxiv (2022) |Pre |
Reported Trait: Cholesterol | — | — | partial-R2: 0.09 | sex, age, deprivation index, PC1-16 | — |
PPM018625 | PGS003818 (TC_EUR_CT) |
PSS011049| European Ancestry| 9,539 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.07254 | — | — |
PPM018626 | PGS003819 (TC_EUR_LDpred2) |
PSS011049| European Ancestry| 9,539 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.0626 | — | — |
PPM018627 | PGS003820 (TC_AFR_CT) |
PSS011047| African Ancestry| 4,302 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.07482 | — | — |
PPM018628 | PGS003821 (TC_AFR_LDpred2) |
PSS011047| African Ancestry| 4,302 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.05914 | — | — |
PPM018629 | PGS003822 (TC_AFR_weighted_LDpred2) |
PSS011047| African Ancestry| 4,302 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.07122 | — | — |
PPM018630 | PGS003823 (TC_AFR_PRSCSx) |
PSS011047| African Ancestry| 4,302 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.08584 | — | — |
PPM018631 | PGS003824 (TC_AFR_CTSLEB) |
PSS011047| African Ancestry| 4,302 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.10208 | — | — |
PPM018632 | PGS003825 (TC_EAS_CT) |
PSS011048| East Asian Ancestry| 971 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.06332 | — | — |
PPM018633 | PGS003826 (TC_EAS_LDpred2) |
PSS011048| East Asian Ancestry| 971 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.07017 | — | — |
PPM018634 | PGS003827 (TC_EAS_weighted_LDpred2) |
PSS011048| East Asian Ancestry| 971 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.08867 | — | — |
PPM018635 | PGS003828 (TC_EAS_PRSCSx) |
PSS011048| East Asian Ancestry| 971 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.05696 | — | — |
PPM018636 | PGS003829 (TC_EAS_CTSLEB) |
PSS011048| East Asian Ancestry| 971 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.07409 | — | — |
PPM018637 | PGS003830 (TC_SAS_CT) |
PSS011050| South Asian Ancestry| 5,153 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.01804 | — | — |
PPM018638 | PGS003831 (TC_SAS_LDpred2) |
PSS011050| South Asian Ancestry| 5,153 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.02349 | — | — |
PPM018639 | PGS003832 (TC_SAS_weighted_LDpred2) |
PSS011050| South Asian Ancestry| 5,153 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.03949 | — | — |
PPM018640 | PGS003833 (TC_SAS_PRSCSx) |
PSS011050| South Asian Ancestry| 5,153 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.04777 | — | — |
PPM018641 | PGS003834 (TC_SAS_CTSLEB) |
PSS011050| South Asian Ancestry| 5,153 individuals |
PGP000489 | Zhang H et al. Nat Genet (2023) |
Reported Trait: Total cholesterol | — | — | R²: 0.04008 | — | — |
PPM018685 | PGS003853 (PRS60_TC) |
PSS011066| East Asian Ancestry| 37,317 individuals |
PGP000493 | Li J et al. JAMA Netw Open (2023) |
Reported Trait: Estimated annual change of total cholesterol | — | — | p-value (inferior to): 0.001 | — | — |
PPM018689 | PGS003853 (PRS60_TC) |
PSS011068| East Asian Ancestry| 15,664 individuals |
PGP000493 | Li J et al. JAMA Netw Open (2023) |
Reported Trait: Estimated annual change of total cholesterol | — | — | p-value (inferior to): 0.001 | — | — |
PPM018693 | PGS003853 (PRS60_TC) |
PSS011067| East Asian Ancestry| 21,653 individuals |
PGP000493 | Li J et al. JAMA Netw Open (2023) |
Reported Trait: Estimated annual change of total cholesterol | — | — | p-value (inferior to): 0.001 | — | — |
PPM020448 | PGS004333 (X30690.score) |
PSS011364| European Ancestry| 56,192 individuals |
PGP000561 | Jung H et al. Commun Biol (2024) |
Reported Trait: Cholesterol (mmol/L) | — | — | PGS R2 (no covariates): 0.17267 | — | — |
PPM020852 | PGS004667 (TC_AFR_lassosum2) |
PSS011421| African Ancestry| 4,302 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.1178 | — | — |
PPM020853 | PGS004668 (TC_AFR_ldpred2) |
PSS011421| African Ancestry| 4,302 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.1045 | — | — |
PPM020854 | PGS004669 (TC_AFR_PROSPER) |
PSS011421| African Ancestry| 4,302 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.132 | — | — |
PPM020855 | PGS004670 (TC_AFR_weighted_lassosum2) |
PSS011421| African Ancestry| 4,302 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.1232 | — | — |
PPM020856 | PGS004671 (TC_AFR_weighted_ldpred2) |
PSS011421| African Ancestry| 4,302 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.1138 | — | — |
PPM020857 | PGS004672 (TC_EAS_lassosum2) |
PSS011425| East Asian Ancestry| 971 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.0758 | — | — |
PPM020858 | PGS004673 (TC_EAS_ldpred2) |
PSS011425| East Asian Ancestry| 971 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.077 | — | — |
PPM020859 | PGS004674 (TC_EAS_PROSPER) |
PSS011425| East Asian Ancestry| 971 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.074 | — | — |
PPM020860 | PGS004675 (TC_EAS_weighted_lassosum2) |
PSS011425| East Asian Ancestry| 971 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.1059 | — | — |
PPM020861 | PGS004676 (TC_EAS_weighted_ldpred2) |
PSS011425| East Asian Ancestry| 971 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.1007 | — | — |
PPM020862 | PGS004677 (TC_SAS_lassosum2) |
PSS011429| South Asian Ancestry| 5,153 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.0282 | — | — |
PPM020863 | PGS004678 (TC_SAS_ldpred2) |
PSS011429| South Asian Ancestry| 5,153 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.0287 | — | — |
PPM020864 | PGS004679 (TC_SAS_PROSPER) |
PSS011429| South Asian Ancestry| 5,153 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.0527 | — | — |
PPM020865 | PGS004680 (TC_SAS_weighted_lassosum2) |
PSS011429| South Asian Ancestry| 5,153 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.0491 | — | — |
PPM020866 | PGS004681 (TC_SAS_weighted_ldpred2) |
PSS011429| South Asian Ancestry| 5,153 individuals |
PGP000595 | Zhang J et al. Nat Commun (2024) |
Reported Trait: Total cholesterol | — | — | adjusted R2: 0.0513 | — | — |
PPM021066 | PGS004841 (tc_PRSmix_eur) |
PSS011508| European Ancestry| 4,193 individuals |
PGP000604 | Truong B et al. Cell Genom (2024) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (Full model versus model with only covariates): 0.086 [0.07, 0.103] | age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 | Incremental R2 (Full model versus model with only covariates) |
PPM021067 | PGS004842 (tc_PRSmix_sas) |
PSS011509| South Asian Ancestry| 5,731 individuals |
PGP000604 | Truong B et al. Cell Genom (2024) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (Full model versus model with only covariates): 0.112 [0.097, 0.128] | age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 | Incremental R2 (Full model versus model with only covariates) |
PPM021068 | PGS004843 (tc_PRSmixPlus_eur) |
PSS011508| European Ancestry| 4,193 individuals |
PGP000604 | Truong B et al. Cell Genom (2024) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (Full model versus model with only covariates): 0.102 [0.085, 0.12] | age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 | Incremental R2 (Full model versus model with only covariates) |
PPM021069 | PGS004844 (tc_PRSmixPlus_sas) |
PSS011509| South Asian Ancestry| 5,731 individuals |
PGP000604 | Truong B et al. Cell Genom (2024) |
Reported Trait: Total cholesterol | — | — | Incremental R2 (Full model versus model with only covariates): 0.127 [0.111, 0.143] | age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 | Incremental R2 (Full model versus model with only covariates) |
PGS Sample Set ID (PSS) |
Phenotype Definitions and Methods | Participant Follow-up Time | Sample Numbers | Age of Study Participants | Sample Ancestry | Additional Ancestry Description | Cohort(s) | Additional Sample/Cohort Information |
---|---|---|---|---|---|---|---|---|
PSS011429 | — | — | 5,153 individuals, 53.0 % Male samples |
Mean = 53.37 years Sd = 8.43 years |
South Asian | — | UKB | — |
PSS010914 | — | — | 19,116 individuals, 46.0 % Male samples |
Mean = 56.9 years Sd = 7.9 years |
European | white British | UKB | — |
PSS010662 | — | — | 6,174 individuals, 45.0 % Male samples |
Mean = 54.5 years Sd = 8.4 years |
European | Italian | UKB | — |
PSS009165 | — | — | 3,952 individuals | — | European | Poland (NE Europe) | UKB | — |
PSS010052 | — | — | 461,918 individuals | — | European, African unspecified, East Asian, South Asian | — | UKB | — |
PSS008271 | — | — | 6,001 individuals | — | South Asian | India (South Asia) | UKB | — |
PSS010410 | — | — | 1,706 individuals, 33.0 % Male samples |
Mean = 52.4 years Sd = 7.8 years |
East Asian | Chinese | UKB | — |
PSS010055 | — | — | 22,608 individuals | — | East Asian | — | KBA, KoGES | — |
PSS007126 | — | — | 6,097 individuals | — | African unspecified | — | UKB | — |
PSS007127 | — | — | 1,616 individuals | — | East Asian | — | UKB | — |
PSS007128 | — | — | 23,774 individuals | — | European | non-white British ancestry | UKB | — |
PSS007129 | — | — | 7,426 individuals | — | South Asian | — | UKB | — |
PSS007130 | — | — | 64,473 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS001083 | Of the 2,531 participants, 1,809 had longitudinal observations for total cholesterol (mg/dL), high density lipoprotein cholesterol (mg/dL) and trigycerides (mg/dL), 1,801 had longitudinal observations for low density lipoprotein cholesterol (mg/dL), 1,325 had longitudinal observations for waist circumference (inches), 2,355 had longitudinal observations for body mass index (kg/m^2) and 1,572 had longitudinal observations for homocysteine (μmol/L). | — | 2,531 individuals, 40.0 % Male samples |
Mean = 48.0 years Sd = 12.0 years |
European, Asian unspecified, Hispanic or Latin American, African unspecified, NR | European = 1,999, Asian unspecified = 228, Hispanic or Latin American = 101, African unspecified = 51, Not reported = 152 | NR | Participants were obtained from the Scientific Wellness Program. |
PSS008939 | — | — | 3,656 individuals | — | African unspecified | Nigeria (West Africa) | UKB | — |
PSS011047 | — | — | 4,302 individuals, 42.0 % Male samples |
Mean = 51.82 years Sd = 8.06 years |
African American or Afro-Caribbean (African American) |
— | UKB | — |
PSS011048 | — | — | 971 individuals, 32.0 % Male samples |
Mean = 52.47 years Sd = 7.81 years |
East Asian | — | UKB | — |
PSS011049 | — | — | 9,539 individuals, 47.0 % Male samples |
Mean = 56.86 years Sd = 8.05 years |
European | — | UKB | — |
PSS008048 | — | — | 1,717 individuals | — | East Asian | China (East Asia) | UKB | — |
PSS011050 | — | — | 5,153 individuals, 53.0 % Male samples |
Mean = 53.37 years Sd = 8.43 years |
South Asian | — | UKB | — |
PSS010830 | — | — | 3,941 individuals, 38.0 % Male samples |
Mean = 54.4 years Sd = 7.5 years |
European | Polish | UKB | — |
PSS000376 | We measured weight and height using regularly calibrated equipment (scales and stadiometer models 770 and 214, respectively; Seca, Hamburg, Germany). Body mass index (BMI; in kg/m2) was also calculated. We measured waist circumference at the midpoint between the lower costal margin and the iliac crest. The hip circumference was measured over both trochanter majores (tangible bone on the outside of the hip joint). Waist to hip ratio was also calculated. We performed all measurements in duplicate, and, if the difference between these measurements exceeded a predefined value, a third measurement was performed. All available measurements were used to calculate means. Heart rate, systolic (SBP) and diastolic (DBP) blood pressure were measured in duplicate with a Dinamap Critikon 1846SX (Critikon Inc, Tampa, FL), from which we calculated means. At the third visit, fasting blood sample of participants were drawn for the measurement of glucose (Roche Diagnostics, Basel, Switzerland), insulin (Diagnostic Systems Laboratories Inc, Webster, TX), HbA1c (high performance liquid chromatography, Variant, Bio-Rad), triglycerides, total cholesterol, HDL cholesterol (Roche Diagnostics) and LDL cholesterol (calculated according to Friedewald’s equation5), as well as alanine transaminase (Photometric determination according to the reference method of the International Federation of Clinical Chemistry (IFCC)6) and lipoprotein(a) (Nephelometric method, BN2, DadeBehring). Serum creatinine was measured by photometric determination with the Jaffé method without deproteinisation (Ecoline® MEGA, DiaSys Diagnostic Systems GmbH. Merck). eGFR for adolescents who were younger than 18 years old was calculated using the Schwartz formula.7 High‐sensitivity C‐reactive protein (hsCRP) was determined using an immunonephelometric method, BN2 (CardioPhase hsCRP, Siemens) with a lower detection limit of 0.175 mg/L. Total IgE measurements were performed using the Phadia Immunocap 100 system with fluoroenzyme immunoassay (FEIA). | — | 1,354 individuals, 47.56 % Male samples |
Mean = 16.22 years Sd = 0.66 years |
European | — | TRAILS | — |
PSS010185 | — | — | 1,115 individuals, 41.1 % Male samples |
Mean = 46.18 years | Hispanic or Latin American | — | HCHS, SOL | — |
PSS009639 | Non-fasting serum lipid levels were measured using the Cobas Integra 400 Plus Chemistry analyser, an automated analyser that employs four different technologies: absorption photometry, fluorescence polarization immunoassay, immune-turbidimetry, and potentiometry for accurate analysis. LDL-C were measured using the homogeneous enzymatic colorimetric assays | — | 2,569 individuals, 42.9 % Male samples |
Mean = 33.1 years Ci = [18.0, 48.2] years |
Sub-Saharan African (South Africans) |
— | SAZ | — |
PSS010578 | — | — | 1,097 individuals, 60.0 % Male samples |
Mean = 51.9 years Sd = 8.0 years |
Greater Middle Eastern (Middle Eastern, North African or Persian) | Iranian | UKB | — |
PSS010326 | — | — | 2,331 individuals, 37.0 % Male samples |
Mean = 52.5 years Sd = 8.1 years |
African American or Afro-Caribbean | Caribbean | UKB | — |
PSS000587 | Measured using fasting blood samples | — | 426 individuals, 46.0 % Male samples |
Mean = 43.3 years Sd = 11.4 years |
East Asian (Chinese) |
— | NR | Adults |
PSS000589 | Measured using fasting blood samples | — | 1,941 individuals, 57.7 % Male samples |
Mean = 58.2 years Sd = 12.34 years |
East Asian (Chinese) |
— | HKDB | — |
PSS010015 | LOW DENSITY LIPOPROTEIN CHOL + HIGH DENSITY LIPOPROTEIN CHOL + Triglycerides/5; Quantitative | — | 9,115 individuals | — | European | — | MGI | — |
PSS000591 | Measured using fasting blood samples | — | 865 individuals, 57.6 % Male samples |
Mean = 57.0 years Sd = 12.08 years |
East Asian (Chinese) |
— | HKDB | — |
PSS011508 | — | — | 4,193 individuals | — | European | — | AllofUs | — |
PSS000593 | Measured using fasting blood samples | — | 4,917 individuals, 44.9 % Male samples |
Mean = 56.3 years Sd = 13.5 years |
East Asian (Chinese) |
— | HKDR | — |
PSS011509 | — | — | 5,731 individuals | — | South Asian | — | G&H | — |
PSS008719 | — | — | 6,326 individuals | — | European | Italy (South Europe) | UKB | — |
PSS011066 | — | — | 37,317 individuals, 41.98 % Male samples |
Mean = 51.37 years Sd = 10.82 years |
East Asian | — | InterASIA | China MUCA, CIMIC |
PSS011067 | — | — | 21,653 individuals, 41.98 % Male samples |
Mean = 51.22 years Sd = 10.78 years |
East Asian | — | InterASIA | China MUCA, CIMIC |
PSS000096 | Lipid levels are represented in mg/dL, individuals on any lipid-lowering medication (n = 1,018) were omitted from all analyses. | — | 1,355 individuals, 46.2 % Male samples |
Mean = 61.68 years | African American or Afro-Caribbean | — | MESA | MESA Classic Cohort |
PSS000097 | Lipid levels are represented in mg/dL, individuals on any lipid-lowering medication (n = 1,018) were omitted from all analyses. | — | 666 individuals, 50.15 % Male samples |
Mean = 61.5 years | East Asian | — | MESA | MESA Classic Cohort |
PSS000098 | Lipid levels are represented in mg/dL, individuals on any lipid-lowering medication (n = 1,018) were omitted from all analyses. | — | 2,063 individuals, 46.78 % Male samples |
Mean = 62.09 years | European | — | MESA | MESA Classic Cohort |
PSS000099 | Lipid levels are represented in mg/dL, individuals on any lipid-lowering medication (n = 1,018) were omitted from all analyses. | — | 1,256 individuals, 48.89 % Male samples |
Mean = 60.65 years | Hispanic or Latin American | — | MESA | MESA Classic Cohort |
PSS011068 | — | — | 15,664 individuals, 41.98 % Male samples |
Mean = 51.57 years Sd = 10.87 years |
East Asian | — | InterASIA | China MUCA, CIMIC |
PSS007835 | — | — | 2,343 individuals | — | African American or Afro-Caribbean | Carribean | UKB | — |
PSS011364 | — | — | 56,192 individuals | — | European | — | UKB | — |
PSS010746 | — | — | 3,627 individuals, 46.0 % Male samples |
Mean = 51.9 years Sd = 8.1 years |
African unspecified | Nigerian | UKB | — |
PSS010494 | — | — | 5,947 individuals, 54.0 % Male samples |
Mean = 53.3 years Sd = 8.4 years |
South Asian | Indian | UKB | — |
PSS010242 | — | — | 2,237 individuals, 45.0 % Male samples |
Mean = 58.1 years Sd = 7.1 years |
European | Ashkenazi | UKB | — |
PSS008493 | — | — | 1,126 individuals | — | Greater Middle Eastern (Middle Eastern, North African or Persian) | Iran (Middle East) | UKB | — |
PSS009391 | — | — | 19,002 individuals | — | European | UK (+ Ireland) | UKB | — |
PSS000662 | — | — | 6,014 individuals | — | African unspecified | — | UKB | — |
PSS000663 | — | — | 1,082 individuals | — | East Asian | — | UKB | — |
PSS000664 | — | — | 23,581 individuals | — | European | Non-British White | UKB | — |
PSS000665 | — | — | 7,336 individuals | — | South Asian | — | UKB | — |
PSS000666 | — | — | 63,794 individuals | — | European (British) |
— | UKB | — |
PSS009851 | — | — | 6,080 individuals | — | African unspecified | — | UKB | — |
PSS009852 | — | — | 877 individuals | — | East Asian | — | UKB | — |
PSS000797 | — | — | 2,129 individuals | — | European | Participants self-identifying as white | MESA | — |
PSS000798 | — | — | 2,004 individuals | — | European | Participants self-identifying as white | MESA | — |
PSS009854 | — | — | 7,655 individuals | — | South Asian | — | UKB | — |
PSS009853 | — | — | 41,214 individuals | — | European | Non-British European | UKB | — |
PSS011421 | — | — | 4,302 individuals, 42.0 % Male samples |
Mean = 51.82 years Sd = 8.06 years |
African American or Afro-Caribbean | — | UKB | — |
PSS011425 | — | — | 971 individuals, 32.0 % Male samples |
Mean = 52.47 years Sd = 7.81 years |
East Asian | — | UKB | — |