Experimental Factor Ontology (EFO) Information | |
Identifier | EFO_0008111 |
Description | quantification of some aspect of diet, including diet patterns, balance of nutrient consumption and glycemic load | Trait category |
Other measurement
|
Child trait(s) | 2 child traits |
Polygenic Score ID & Name | PGS Publication ID (PGP) | Reported Trait | Mapped Trait(s) (Ontology) | Number of Variants |
Ancestry distribution GWAS Dev Eval |
Scoring File (FTP Link) |
---|---|---|---|---|---|---|
PGS000978 (GBE_INI1438) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Bread intake | carbohydrate intake measurement | 3,483 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000978/ScoringFiles/PGS000978.txt.gz |
PGS000991 (GBE_BIN_FC4006144) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Never eat sugar | sugar consumption measurement | 2,816 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000991/ScoringFiles/PGS000991.txt.gz |
PGS001034 (GBE_QT_FC10001478) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Salt added to food | diet measurement | 6,651 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001034/ScoringFiles/PGS001034.txt.gz |
PGS001056 (GBE_QT_FC1001369) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Beef intake | diet measurement | 991 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001056/ScoringFiles/PGS001056.txt.gz |
PGS001057 (GBE_INI1458) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Cereal consumption | diet measurement | 4,882 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001057/ScoringFiles/PGS001057.txt.gz |
PGS001058 (GBE_BIN_FC20001468) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Cereal consumption (biscuit cereal) | diet measurement | 146 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001058/ScoringFiles/PGS001058.txt.gz |
PGS001059 (GBE_BIN_FC50001468) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Cereal consumption (other) | diet measurement | 1,286 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001059/ScoringFiles/PGS001059.txt.gz |
PGS001060 (GBE_QT_FC1001408) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Cheese intake | diet measurement | 6,678 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001060/ScoringFiles/PGS001060.txt.gz |
PGS001061 (GBE_INI1289) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Cooked vegetable consumption | diet measurement | 1,085 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001061/ScoringFiles/PGS001061.txt.gz |
PGS001062 (GBE_INI1309) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Fresh fruit intake | diet measurement | 4,257 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001062/ScoringFiles/PGS001062.txt.gz |
PGS001063 (GBE_BIN_FC10001538) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Major dietary changes in the last 5 years due to illness | diet measurement | 730 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001063/ScoringFiles/PGS001063.txt.gz |
PGS001064 (GBE_BIN_FC30001418) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Milk consumption (skimmed) | diet measurement | 116 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001064/ScoringFiles/PGS001064.txt.gz |
PGS001065 (GBE_BIN_FC3006144) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Never eat wheat | diet measurement | 5 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001065/ScoringFiles/PGS001065.txt.gz |
PGS001066 (GBE_QT_FC1001359) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Poultry intake | diet measurement | 1,609 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001066/ScoringFiles/PGS001066.txt.gz |
PGS001067 (GBE_QT_FC1001349) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Processed meat intake | diet measurement | 2,346 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001067/ScoringFiles/PGS001067.txt.gz |
PGS001068 (GBE_INI1548) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Variation in diet | diet measurement | 1,353 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001068/ScoringFiles/PGS001068.txt.gz |
PGS001069 (GBE_INI1528) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Water intake | diet measurement | 4,994 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001069/ScoringFiles/PGS001069.txt.gz |
PGS001389 (GBE_INI1319) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Dried fruit intake | diet measurement | 989 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001389/ScoringFiles/PGS001389.txt.gz |
PGS001518 (GBE_INI100010) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Portion size | diet measurement | 591 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001518/ScoringFiles/PGS001518.txt.gz |
PGS004221 (PRS8_carbohydrate) |
PGP000521 | Merino J et al. Mol Psychiatry (2023) |
Carbohydrate preference | carbohydrate intake measurement | 8 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004221/ScoringFiles/PGS004221.txt.gz |
PGS Performance Metric ID (PPM) |
Evaluated Score |
PGS Sample Set ID (PSS) |
Performance Source | Trait |
PGS Effect Sizes (per SD change) |
Classification Metrics | Other Metrics | Covariates Included in the Model |
PGS Performance: Other Relevant Information |
---|---|---|---|---|---|---|---|---|---|
PPM007683 | PGS000978 (GBE_INI1438) |
PSS004841| African Ancestry| 5,979 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Bread intake | — | — | R²: 0.08606 [0.07303, 0.09909] Incremental R2 (full-covars): -0.00106 PGS R2 (no covariates): 0.00083 [-0.00057, 0.00223] |
age, sex, UKB array type, Genotype PCs | — |
PPM007684 | PGS000978 (GBE_INI1438) |
PSS004842| East Asian Ancestry| 1,557 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Bread intake | — | — | R²: 0.04803 [0.02826, 0.0678] Incremental R2 (full-covars): -0.00683 PGS R2 (no covariates): 1e-05 [-0.00021, 0.00022] |
age, sex, UKB array type, Genotype PCs | — |
PPM007685 | PGS000978 (GBE_INI1438) |
PSS004843| European Ancestry| 24,277 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Bread intake | — | — | R²: 0.09076 [0.08395, 0.09756] Incremental R2 (full-covars): 0.00266 PGS R2 (no covariates): 0.0026 [0.00134, 0.00386] |
age, sex, UKB array type, Genotype PCs | — |
PPM007686 | PGS000978 (GBE_INI1438) |
PSS004844| South Asian Ancestry| 7,412 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Bread intake | — | — | R²: 0.05893 [0.04882, 0.06905] Incremental R2 (full-covars): -0.00378 PGS R2 (no covariates): 0.00041 [-0.00049, 0.0013] |
age, sex, UKB array type, Genotype PCs | — |
PPM007687 | PGS000978 (GBE_INI1438) |
PSS004845| European Ancestry| 66,112 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Bread intake | — | — | R²: 0.09655 [0.09231, 0.10079] Incremental R2 (full-covars): 0.00312 PGS R2 (no covariates): 0.0033 [0.00243, 0.00416] |
age, sex, UKB array type, Genotype PCs | — |
PPM007727 | PGS000991 (GBE_BIN_FC4006144) |
PSS003948| European Ancestry| 67,271 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat sugar | — | AUROC: 0.61373 [0.60865, 0.61881] | R²: 0.04147 Incremental AUROC (full-covars): 0.00834 PGS R2 (no covariates): 0.00519 PGS AUROC (no covariates): 0.54069 [0.5353, 0.54607] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM007723 | PGS000991 (GBE_BIN_FC4006144) |
PSS003944| African Ancestry| 6,368 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat sugar | — | AUROC: 0.6377 [0.61811, 0.6573] | R²: 0.05071 Incremental AUROC (full-covars): -4e-05 PGS R2 (no covariates): 0.00087 PGS AUROC (no covariates): 0.51667 [0.49625, 0.5371] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM007724 | PGS000991 (GBE_BIN_FC4006144) |
PSS003945| East Asian Ancestry| 1,653 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat sugar | — | AUROC: 0.64533 [0.60258, 0.68809] | R²: 0.05896 Incremental AUROC (full-covars): 0.0007 PGS R2 (no covariates): 0.0005 PGS AUROC (no covariates): 0.51881 [0.47535, 0.56226] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM007725 | PGS000991 (GBE_BIN_FC4006144) |
PSS003946| European Ancestry| 24,800 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat sugar | — | AUROC: 0.62033 [0.61189, 0.62878] | R²: 0.04489 Incremental AUROC (full-covars): 0.00242 PGS R2 (no covariates): 0.00208 PGS AUROC (no covariates): 0.5258 [0.51682, 0.53477] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM007726 | PGS000991 (GBE_BIN_FC4006144) |
PSS003947| South Asian Ancestry| 7,539 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat sugar | — | AUROC: 0.6355 [0.61763, 0.65337] | R²: 0.04896 Incremental AUROC (full-covars): 0.00252 PGS R2 (no covariates): 0.00172 PGS AUROC (no covariates): 0.52933 [0.51032, 0.54833] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM007933 | PGS001034 (GBE_QT_FC10001478) |
PSS007506| African Ancestry| 6,428 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Salt added to food | — | — | R²: 0.01628 [0.01018, 0.02238] Incremental R2 (full-covars): -0.00168 PGS R2 (no covariates): 0.00089 [-0.00056, 0.00234] |
age, sex, UKB array type, Genotype PCs | — |
PPM007934 | PGS001034 (GBE_QT_FC10001478) |
PSS007507| East Asian Ancestry| 1,671 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Salt added to food | — | — | R²: 0.04497 [0.02578, 0.06416] Incremental R2 (full-covars): 0.00495 PGS R2 (no covariates): 0.00478 [-0.00174, 0.0113] |
age, sex, UKB array type, Genotype PCs | — |
PPM007935 | PGS001034 (GBE_QT_FC10001478) |
PSS007508| European Ancestry| 24,900 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Salt added to food | — | — | R²: 0.02412 [0.02036, 0.02789] Incremental R2 (full-covars): 0.01326 PGS R2 (no covariates): 0.01337 [0.01054, 0.01621] |
age, sex, UKB array type, Genotype PCs | — |
PPM007936 | PGS001034 (GBE_QT_FC10001478) |
PSS007509| South Asian Ancestry| 7,681 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Salt added to food | — | — | R²: 0.01555 [0.01012, 0.02099] Incremental R2 (full-covars): -0.00122 PGS R2 (no covariates): 0.00138 [-0.00026, 0.00302] |
age, sex, UKB array type, Genotype PCs | — |
PPM007937 | PGS001034 (GBE_QT_FC10001478) |
PSS007510| European Ancestry| 67,416 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Salt added to food | — | — | R²: 0.02452 [0.02221, 0.02682] Incremental R2 (full-covars): 0.01564 PGS R2 (no covariates): 0.01646 [0.01455, 0.01836] |
age, sex, UKB array type, Genotype PCs | — |
PPM008038 | PGS001056 (GBE_QT_FC1001369) |
PSS007556| African Ancestry| 6,271 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Beef intake | — | — | R²: 0.09702 [0.08335, 0.11069] Incremental R2 (full-covars): -0.00013 PGS R2 (no covariates): 0.00023 [-0.00051, 0.00097] |
age, sex, UKB array type, Genotype PCs | — |
PPM008039 | PGS001056 (GBE_QT_FC1001369) |
PSS007557| East Asian Ancestry| 1,641 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Beef intake | — | — | R²: 0.05046 [0.03024, 0.07067] Incremental R2 (full-covars): -0.00046 PGS R2 (no covariates): 0.00038 [-0.00147, 0.00224] |
age, sex, UKB array type, Genotype PCs | — |
PPM008040 | PGS001056 (GBE_QT_FC1001369) |
PSS007558| European Ancestry| 24,795 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Beef intake | — | — | R²: 0.03152 [0.02725, 0.03579] Incremental R2 (full-covars): 0.0011 PGS R2 (no covariates): 0.00146 [0.00051, 0.00241] |
age, sex, UKB array type, Genotype PCs | — |
PPM008041 | PGS001056 (GBE_QT_FC1001369) |
PSS007559| South Asian Ancestry| 7,508 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Beef intake | — | — | R²: 0.0873 [0.07536, 0.09924] Incremental R2 (full-covars): -0.0011 PGS R2 (no covariates): 0.00018 [-0.00042, 0.00078] |
age, sex, UKB array type, Genotype PCs | — |
PPM008042 | PGS001056 (GBE_QT_FC1001369) |
PSS007560| European Ancestry| 67,208 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Beef intake | — | — | R²: 0.02397 [0.02169, 0.02626] Incremental R2 (full-covars): 0.00158 PGS R2 (no covariates): 0.00171 [0.00109, 0.00234] |
age, sex, UKB array type, Genotype PCs | — |
PPM008043 | PGS001057 (GBE_INI1458) |
PSS004846| African Ancestry| 5,708 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal intake | — | — | R²: 0.00609 [0.00232, 0.00986] Incremental R2 (full-covars): -0.00296 PGS R2 (no covariates): 4e-05 [-0.00026, 0.00033] |
age, sex, UKB array type, Genotype PCs | — |
PPM008044 | PGS001057 (GBE_INI1458) |
PSS004847| East Asian Ancestry| 1,426 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal intake | — | — | R²: 0.03238 [0.01588, 0.04888] Incremental R2 (full-covars): 0.00542 PGS R2 (no covariates): 0.00483 [-0.00173, 0.01138] |
age, sex, UKB array type, Genotype PCs | — |
PPM008045 | PGS001057 (GBE_INI1458) |
PSS004848| European Ancestry| 23,372 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal intake | — | — | R²: 0.03202 [0.02771, 0.03632] Incremental R2 (full-covars): 0.0053 PGS R2 (no covariates): 0.00607 [0.00415, 0.00799] |
age, sex, UKB array type, Genotype PCs | — |
PPM008046 | PGS001057 (GBE_INI1458) |
PSS004849| South Asian Ancestry| 7,023 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal intake | — | — | R²: 0.01676 [0.01112, 0.02239] Incremental R2 (full-covars): 0.00168 PGS R2 (no covariates): 0.0026 [0.00035, 0.00485] |
age, sex, UKB array type, Genotype PCs | — |
PPM008047 | PGS001057 (GBE_INI1458) |
PSS004850| European Ancestry| 64,778 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal intake | — | — | R²: 0.0216 [0.01943, 0.02377] Incremental R2 (full-covars): 0.00622 PGS R2 (no covariates): 0.0067 [0.00547, 0.00792] |
age, sex, UKB array type, Genotype PCs | — |
PPM008048 | PGS001058 (GBE_BIN_FC20001468) |
PSS003810| African Ancestry| 4,766 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Biscuit cereal (e.g. Weetabix) | — | AUROC: 0.53868 [0.51659, 0.56077] | PGS R2 (no covariates): 0.00013 R²: 0.00503 Incremental AUROC (full-covars): 0.00148 PGS AUROC (no covariates): 0.50487 [0.48225, 0.52748] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008049 | PGS001058 (GBE_BIN_FC20001468) |
PSS003811| East Asian Ancestry| 988 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Biscuit cereal (e.g. Weetabix) | — | AUROC: 0.56685 [0.51503, 0.61867] | R²: 0.02055 Incremental AUROC (full-covars): 0.00316 PGS R2 (no covariates): 0.00024 PGS AUROC (no covariates): 0.50224 [0.44501, 0.55946] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008050 | PGS001058 (GBE_BIN_FC20001468) |
PSS003812| European Ancestry| 18,951 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Biscuit cereal (e.g. Weetabix) | — | AUROC: 0.58711 [0.57552, 0.5987] | R²: 0.01991 Incremental AUROC (full-covars): 0.00031 PGS R2 (no covariates): 4e-05 PGS AUROC (no covariates): 0.50281 [0.49093, 0.51469] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008051 | PGS001058 (GBE_BIN_FC20001468) |
PSS003813| South Asian Ancestry| 5,759 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Biscuit cereal (e.g. Weetabix) | — | AUROC: 0.56331 [0.54576, 0.58087] | R²: 0.01354 Incremental AUROC (full-covars): -0.00093 PGS R2 (no covariates): 2e-05 PGS AUROC (no covariates): 0.49754 [0.47927, 0.5158] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008052 | PGS001058 (GBE_BIN_FC20001468) |
PSS003814| European Ancestry| 56,841 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Biscuit cereal (e.g. Weetabix) | — | AUROC: 0.55057 [0.54462, 0.55652] | R²: 0.00808 Incremental AUROC (full-covars): 0.00209 PGS R2 (no covariates): 0.00069 PGS AUROC (no covariates): 0.51496 [0.50892, 0.521] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008053 | PGS001059 (GBE_BIN_FC50001468) |
PSS003959| African Ancestry| 4,766 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Other (e.g. Cornflakes, Frosties) | — | AUROC: 0.61741 [0.59849, 0.63633] | R²: 0.04438 Incremental AUROC (full-covars): -0.00159 PGS R2 (no covariates): 0.0 PGS AUROC (no covariates): 0.49817 [0.47857, 0.51776] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008054 | PGS001059 (GBE_BIN_FC50001468) |
PSS003960| East Asian Ancestry| 988 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Other (e.g. Cornflakes, Frosties) | — | AUROC: 0.64303 [0.60109, 0.68497] | R²: 0.07487 Incremental AUROC (full-covars): -0.00286 PGS R2 (no covariates): 0.00017 PGS AUROC (no covariates): 0.5106 [0.46867, 0.55253] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008055 | PGS001059 (GBE_BIN_FC50001468) |
PSS003961| European Ancestry| 18,951 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Other (e.g. Cornflakes, Frosties) | — | AUROC: 0.60408 [0.59345, 0.6147] | R²: 0.03191 Incremental AUROC (full-covars): 0.00341 PGS R2 (no covariates): 0.00282 PGS AUROC (no covariates): 0.53042 [0.51944, 0.54141] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008056 | PGS001059 (GBE_BIN_FC50001468) |
PSS003962| South Asian Ancestry| 5,759 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Other (e.g. Cornflakes, Frosties) | — | AUROC: 0.59996 [0.58323, 0.61669] | R²: 0.03365 Incremental AUROC (full-covars): 0.00229 PGS R2 (no covariates): 0.0016 PGS AUROC (no covariates): 0.52513 [0.50821, 0.54206] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008057 | PGS001059 (GBE_BIN_FC50001468) |
PSS003963| European Ancestry| 56,841 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cereal type: Other (e.g. Cornflakes, Frosties) | — | AUROC: 0.58769 [0.58186, 0.59353] | R²: 0.02328 Incremental AUROC (full-covars): 0.00502 PGS R2 (no covariates): 0.00268 PGS AUROC (no covariates): 0.52828 [0.52234, 0.53422] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008058 | PGS001060 (GBE_QT_FC1001408) |
PSS007561| African Ancestry| 5,882 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cheese intake | — | — | R²: 0.04412 [0.03436, 0.05388] Incremental R2 (full-covars): -0.00685 PGS R2 (no covariates): 0.0 [-0.00005, 0.00006] |
age, sex, UKB array type, Genotype PCs | — |
PPM008059 | PGS001060 (GBE_QT_FC1001408) |
PSS007562| East Asian Ancestry| 1,552 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cheese intake | — | — | R²: 0.01193 [0.0017, 0.02215] Incremental R2 (full-covars): -0.00537 PGS R2 (no covariates): 2e-05 [-0.00041, 0.00045] |
age, sex, UKB array type, Genotype PCs | — |
PPM008060 | PGS001060 (GBE_QT_FC1001408) |
PSS007563| European Ancestry| 24,143 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cheese intake | — | — | R²: 0.05514 [0.04963, 0.06065] Incremental R2 (full-covars): 0.00809 PGS R2 (no covariates): 0.01422 [0.0113, 0.01714] |
age, sex, UKB array type, Genotype PCs | — |
PPM008061 | PGS001060 (GBE_QT_FC1001408) |
PSS007564| South Asian Ancestry| 7,212 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cheese intake | — | — | R²: 0.02111 [0.01481, 0.0274] Incremental R2 (full-covars): -0.00079 PGS R2 (no covariates): 0.00163 [-0.00015, 0.00342] |
age, sex, UKB array type, Genotype PCs | — |
PPM008062 | PGS001060 (GBE_QT_FC1001408) |
PSS007565| European Ancestry| 65,948 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cheese intake | — | — | R²: 0.02335 [0.0211, 0.0256] Incremental R2 (full-covars): 0.00727 PGS R2 (no covariates): 0.00852 [0.00714, 0.00991] |
age, sex, UKB array type, Genotype PCs | — |
PPM008064 | PGS001061 (GBE_INI1289) |
PSS004812| East Asian Ancestry| 1,578 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cooked vegetable intake | — | — | R²: 0.0129 [0.00227, 0.02352] Incremental R2 (full-covars): -0.00036 PGS R2 (no covariates): 0.00013 [-0.00096, 0.00123] |
age, sex, UKB array type, Genotype PCs | — |
PPM008065 | PGS001061 (GBE_INI1289) |
PSS004813| European Ancestry| 24,087 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cooked vegetable intake | — | — | Incremental R2 (full-covars): 0.00028 R²: 0.01788 [0.01462, 0.02114] PGS R2 (no covariates): 0.00042 [-0.00009, 0.00093] |
age, sex, UKB array type, Genotype PCs | — |
PPM008066 | PGS001061 (GBE_INI1289) |
PSS004814| South Asian Ancestry| 7,034 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cooked vegetable intake | — | — | R²: 0.02023 [0.01406, 0.0264] Incremental R2 (full-covars): -0.00028 PGS R2 (no covariates): 0.0 [-0.00004, 0.00004] |
age, sex, UKB array type, Genotype PCs | — |
PPM008063 | PGS001061 (GBE_INI1289) |
PSS004811| African Ancestry| 5,840 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cooked vegetable intake | — | — | R²: 0.01567 [0.00968, 0.02166] Incremental R2 (full-covars): 0.00017 PGS R2 (no covariates): 0.00022 [-0.0005, 0.00094] |
age, sex, UKB array type, Genotype PCs | — |
PPM008067 | PGS001061 (GBE_INI1289) |
PSS004815| European Ancestry| 65,598 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Cooked vegetable intake | — | — | R²: 0.01065 [0.00911, 0.01219] Incremental R2 (full-covars): 0.0009 PGS R2 (no covariates): 0.00097 [0.0005, 0.00145] |
age, sex, UKB array type, Genotype PCs | — |
PPM008068 | PGS001062 (GBE_INI1309) |
PSS004816| African Ancestry| 6,032 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fresh fruit intake | — | — | R²: 0.02533 [0.01779, 0.03287] Incremental R2 (full-covars): 0.00021 PGS R2 (no covariates): 0.00107 [-0.00052, 0.00265] |
age, sex, UKB array type, Genotype PCs | — |
PPM008069 | PGS001062 (GBE_INI1309) |
PSS004817| East Asian Ancestry| 1,592 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fresh fruit intake | — | — | R²: 0.01082 [0.00107, 0.02056] Incremental R2 (full-covars): -0.00286 PGS R2 (no covariates): 4e-05 [-0.00054, 0.00062] |
age, sex, UKB array type, Genotype PCs | — |
PPM008070 | PGS001062 (GBE_INI1309) |
PSS004818| European Ancestry| 24,138 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fresh fruit intake | — | — | R²: 0.03809 [0.03342, 0.04275] Incremental R2 (full-covars): 0.00379 PGS R2 (no covariates): 0.00464 [0.00295, 0.00632] |
age, sex, UKB array type, Genotype PCs | — |
PPM008071 | PGS001062 (GBE_INI1309) |
PSS004819| South Asian Ancestry| 7,340 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fresh fruit intake | — | — | R²: 0.01209 [0.00728, 0.0169] Incremental R2 (full-covars): 0.00017 PGS R2 (no covariates): 0.00092 [-0.00042, 0.00226] |
age, sex, UKB array type, Genotype PCs | — |
PPM008072 | PGS001062 (GBE_INI1309) |
PSS004820| European Ancestry| 65,281 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Fresh fruit intake | — | — | R²: 0.02519 [0.02286, 0.02753] Incremental R2 (full-covars): 0.00617 PGS R2 (no covariates): 0.00619 [0.00501, 0.00737] |
age, sex, UKB array type, Genotype PCs | — |
PPM008073 | PGS001063 (GBE_BIN_FC10001538) |
PSS003696| African Ancestry| 6,357 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Major dietary changes in the last 5 years becuase of illness | — | AUROC: 0.62048 [0.60331, 0.63766] | R²: 0.04237 Incremental AUROC (full-covars): 0.0032 PGS R2 (no covariates): 0.00132 PGS AUROC (no covariates): 0.52027 [0.50231, 0.53822] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008074 | PGS001063 (GBE_BIN_FC10001538) |
PSS003697| East Asian Ancestry| 1,645 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Major dietary changes in the last 5 years becuase of illness | — | AUROC: 0.63276 [0.58471, 0.68082] | R²: 0.0543 Incremental AUROC (full-covars): 0.00877 PGS R2 (no covariates): 0.001 PGS AUROC (no covariates): 0.51406 [0.46553, 0.56259] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008075 | PGS001063 (GBE_BIN_FC10001538) |
PSS003698| European Ancestry| 24,842 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Major dietary changes in the last 5 years becuase of illness | — | AUROC: 0.58219 [0.57084, 0.59354] | R²: 0.01696 Incremental AUROC (full-covars): 0.00638 PGS R2 (no covariates): 0.00241 PGS AUROC (no covariates): 0.53194 [0.52043, 0.54345] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008076 | PGS001063 (GBE_BIN_FC10001538) |
PSS003699| South Asian Ancestry| 7,568 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Major dietary changes in the last 5 years becuase of illness | — | AUROC: 0.59898 [0.58379, 0.61417] | R²: 0.02965 Incremental AUROC (full-covars): 0.00116 PGS R2 (no covariates): 0.00081 PGS AUROC (no covariates): 0.5156 [0.49978, 0.53141] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008077 | PGS001063 (GBE_BIN_FC10001538) |
PSS003700| European Ancestry| 67,297 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Major dietary changes in the last 5 years becuase of illness | — | AUROC: 0.57633 [0.56954, 0.58313] | R²: 0.01433 Incremental AUROC (full-covars): 0.00677 PGS R2 (no covariates): 0.00246 PGS AUROC (no covariates): 0.53277 [0.52584, 0.5397] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008078 | PGS001064 (GBE_BIN_FC30001418) |
PSS003869| African Ancestry| 6,403 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Milk type: Skimmed | — | AUROC: 0.56598 [0.54374, 0.58822] | R²: 0.01233 Incremental AUROC (full-covars): -0.00074 PGS R2 (no covariates): 1e-05 PGS AUROC (no covariates): 0.49637 [0.47444, 0.51829] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008079 | PGS001064 (GBE_BIN_FC30001418) |
PSS003870| East Asian Ancestry| 1,665 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Milk type: Skimmed | — | AUROC: 0.58283 [0.5384, 0.62725] | R²: 0.0164 Incremental AUROC (full-covars): -0.00089 PGS R2 (no covariates): 0.00033 PGS AUROC (no covariates): 0.48955 [0.44321, 0.53588] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008080 | PGS001064 (GBE_BIN_FC30001418) |
PSS003871| European Ancestry| 24,862 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Milk type: Skimmed | — | AUROC: 0.56928 [0.56021, 0.57836] | R²: 0.01433 Incremental AUROC (full-covars): 0.0004 PGS R2 (no covariates): 0.00014 PGS AUROC (no covariates): 0.50724 [0.49799, 0.51648] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008081 | PGS001064 (GBE_BIN_FC30001418) |
PSS003872| South Asian Ancestry| 7,664 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Milk type: Skimmed | — | AUROC: 0.56624 [0.54661, 0.58587] | R²: 0.01224 Incremental AUROC (full-covars): 2e-05 PGS R2 (no covariates): 0.00032 PGS AUROC (no covariates): 0.51585 [0.49596, 0.53574] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008082 | PGS001064 (GBE_BIN_FC30001418) |
PSS003873| European Ancestry| 67,386 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Milk type: Skimmed | — | AUROC: 0.57752 [0.57233, 0.58271] | R²: 0.01907 Incremental AUROC (full-covars): 0.00126 PGS R2 (no covariates): 0.00095 PGS AUROC (no covariates): 0.51868 [0.51338, 0.52397] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008083 | PGS001065 (GBE_BIN_FC3006144) |
PSS003909| African Ancestry| 6,368 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat wheat | — | AUROC: 0.55785 [0.52697, 0.58872] | R²: 0.0067 Incremental AUROC (full-covars): -0.00998 PGS R2 (no covariates): 1e-05 PGS AUROC (no covariates): 0.49224 [0.4594, 0.52508] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008084 | PGS001065 (GBE_BIN_FC3006144) |
PSS003910| East Asian Ancestry| 1,653 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat wheat | — | AUROC: 0.64888 [0.57732, 0.72044] | R²: 0.04019 Incremental AUROC (full-covars): 0.00386 PGS R2 (no covariates): 0.00453 PGS AUROC (no covariates): 0.56299 [0.49269, 0.63329] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008085 | PGS001065 (GBE_BIN_FC3006144) |
PSS003911| European Ancestry| 24,800 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat wheat | — | AUROC: 0.62411 [0.60564, 0.64259] | R²: 0.02456 Incremental AUROC (full-covars): 0.02182 PGS R2 (no covariates): 0.01049 PGS AUROC (no covariates): 0.56561 [0.54517, 0.58606] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008086 | PGS001065 (GBE_BIN_FC3006144) |
PSS003912| South Asian Ancestry| 7,539 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat wheat | — | AUROC: 0.59764 [0.56396, 0.63132] | R²: 0.01641 Incremental AUROC (full-covars): 0.00593 PGS R2 (no covariates): 0.00163 PGS AUROC (no covariates): 0.53668 [0.50324, 0.57012] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008087 | PGS001065 (GBE_BIN_FC3006144) |
PSS003913| European Ancestry| 67,271 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Never eat wheat | — | AUROC: 0.58236 [0.56955, 0.59518] | R²: 0.0117 Incremental AUROC (full-covars): 0.01856 PGS R2 (no covariates): 0.00607 PGS AUROC (no covariates): 0.55077 [0.53718, 0.56437] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008088 | PGS001066 (GBE_QT_FC1001359) |
PSS007551| African Ancestry| 6,377 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Poultry intake | — | — | PGS R2 (no covariates): 0.00093 [-0.00055, 0.00241] R²: 0.02159 [0.0146, 0.02858] Incremental R2 (full-covars): 0.00053 |
age, sex, UKB array type, Genotype PCs | — |
PPM008089 | PGS001066 (GBE_QT_FC1001359) |
PSS007552| East Asian Ancestry| 1,655 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Poultry intake | — | — | R²: 0.0497 [0.02962, 0.06977] Incremental R2 (full-covars): -0.00108 PGS R2 (no covariates): 0.00013 [-0.00097, 0.00123] |
age, sex, UKB array type, Genotype PCs | — |
PPM008090 | PGS001066 (GBE_QT_FC1001359) |
PSS007553| European Ancestry| 24,847 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Poultry intake | — | — | R²: 0.00958 [0.00717, 0.01199] Incremental R2 (full-covars): 0.0005 PGS R2 (no covariates): 0.00079 [0.00009, 0.00149] |
age, sex, UKB array type, Genotype PCs | — |
PPM008091 | PGS001066 (GBE_QT_FC1001359) |
PSS007554| South Asian Ancestry| 7,623 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Poultry intake | — | — | R²: 0.15633 [0.14156, 0.1711] Incremental R2 (full-covars): -0.00044 PGS R2 (no covariates): 0.00074 [-0.00046, 0.00195] |
age, sex, UKB array type, Genotype PCs | — |
PPM008092 | PGS001066 (GBE_QT_FC1001359) |
PSS007555| European Ancestry| 67,313 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Poultry intake | — | — | R²: 0.00656 [0.00535, 0.00778] Incremental R2 (full-covars): 0.0012 PGS R2 (no covariates): 0.00124 [0.00071, 0.00177] |
age, sex, UKB array type, Genotype PCs | — |
PPM008093 | PGS001067 (GBE_QT_FC1001349) |
PSS007546| African Ancestry| 6,311 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Processed meat intake | — | — | R²: 0.05609 [0.04522, 0.06695] Incremental R2 (full-covars): 0.00153 PGS R2 (no covariates): 0.00178 [-0.00027, 0.00382] |
age, sex, UKB array type, Genotype PCs | — |
PPM008094 | PGS001067 (GBE_QT_FC1001349) |
PSS007547| East Asian Ancestry| 1,642 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Processed meat intake | — | — | R²: 0.07224 [0.04861, 0.09588] Incremental R2 (full-covars): -0.0026 PGS R2 (no covariates): 4e-05 [-0.00058, 0.00066] |
age, sex, UKB array type, Genotype PCs | — |
PPM008095 | PGS001067 (GBE_QT_FC1001349) |
PSS007548| European Ancestry| 24,852 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Processed meat intake | — | — | R²: 0.10754 [0.10027, 0.11481] Incremental R2 (full-covars): 0.00194 PGS R2 (no covariates): 0.003 [0.00165, 0.00436] |
age, sex, UKB array type, Genotype PCs | — |
PPM008096 | PGS001067 (GBE_QT_FC1001349) |
PSS007549| South Asian Ancestry| 7,555 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Processed meat intake | — | — | R²: 0.10977 [0.09671, 0.12282] Incremental R2 (full-covars): -0.00173 PGS R2 (no covariates): 1e-05 [-0.00014, 0.00017] |
age, sex, UKB array type, Genotype PCs | — |
PPM008097 | PGS001067 (GBE_QT_FC1001349) |
PSS007550| European Ancestry| 67,321 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Processed meat intake | — | — | R²: 0.08633 [0.08228, 0.09039] Incremental R2 (full-covars): 0.00281 PGS R2 (no covariates): 0.00275 [0.00196, 0.00354] |
age, sex, UKB array type, Genotype PCs | — |
PPM008098 | PGS001068 (GBE_INI1548) |
PSS004866| African Ancestry| 6,271 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Variation in diet | — | — | R²: 0.01563 [0.00965, 0.02161] Incremental R2 (full-covars): 1e-05 PGS R2 (no covariates): 0.00026 [-0.00053, 0.00105] |
age, sex, UKB array type, Genotype PCs | — |
PPM008099 | PGS001068 (GBE_INI1548) |
PSS004867| East Asian Ancestry| 1,585 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Variation in diet | — | — | R²: 0.04021 [0.02197, 0.05845] Incremental R2 (full-covars): 0.00116 PGS R2 (no covariates): 0.00216 [-0.00223, 0.00655] |
age, sex, UKB array type, Genotype PCs | — |
PPM008100 | PGS001068 (GBE_INI1548) |
PSS004868| European Ancestry| 24,750 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Variation in diet | — | — | R²: 0.00852 [0.00625, 0.01079] Incremental R2 (full-covars): 0.00183 PGS R2 (no covariates): 0.00183 [0.00077, 0.00289] |
age, sex, UKB array type, Genotype PCs | — |
PPM008101 | PGS001068 (GBE_INI1548) |
PSS004869| South Asian Ancestry| 7,343 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Variation in diet | — | — | R²: 0.01371 [0.00859, 0.01882] Incremental R2 (full-covars): 0.00049 PGS R2 (no covariates): 0.00066 [-0.00048, 0.00181] |
age, sex, UKB array type, Genotype PCs | — |
PPM008102 | PGS001068 (GBE_INI1548) |
PSS004870| European Ancestry| 67,259 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Variation in diet | — | — | R²: 0.0081 [0.00675, 0.00944] Incremental R2 (full-covars): 0.00212 PGS R2 (no covariates): 0.00213 [0.00144, 0.00283] |
age, sex, UKB array type, Genotype PCs | — |
PPM008106 | PGS001069 (GBE_INI1528) |
PSS004864| South Asian Ancestry| 7,550 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Water intake | — | — | R²: 0.01463 [0.00935, 0.01991] Incremental R2 (full-covars): 0.0043 PGS R2 (no covariates): 0.00415 [0.00131, 0.00699] |
age, sex, UKB array type, Genotype PCs | — |
PPM008107 | PGS001069 (GBE_INI1528) |
PSS004865| European Ancestry| 62,737 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Water intake | — | — | R²: 0.038 [0.03517, 0.04084] Incremental R2 (full-covars): 0.0082 PGS R2 (no covariates): 0.0083 [0.00694, 0.00966] |
age, sex, UKB array type, Genotype PCs | — |
PPM008103 | PGS001069 (GBE_INI1528) |
PSS004861| African Ancestry| 6,061 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Water intake | — | — | R²: 0.02463 [0.01719, 0.03207] Incremental R2 (full-covars): 0.00076 PGS R2 (no covariates): 0.00216 [-0.00009, 0.00442] |
age, sex, UKB array type, Genotype PCs | — |
PPM008104 | PGS001069 (GBE_INI1528) |
PSS004862| East Asian Ancestry| 1,590 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Water intake | — | — | R²: 0.03011 [0.01416, 0.04605] Incremental R2 (full-covars): 0.0 PGS R2 (no covariates): 0.00076 [-0.00185, 0.00338] |
age, sex, UKB array type, Genotype PCs | — |
PPM008105 | PGS001069 (GBE_INI1528) |
PSS004863| European Ancestry| 23,579 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Water intake | — | — | R²: 0.05496 [0.04946, 0.06046] Incremental R2 (full-covars): 0.00553 PGS R2 (no covariates): 0.00756 [0.00542, 0.00971] |
age, sex, UKB array type, Genotype PCs | — |
PPM005240 | PGS001389 (GBE_INI1319) |
PSS004821| African Ancestry| 5,684 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Dried fruit intake | — | — | R²: 0.00681 [0.00283, 0.0108] Incremental R2 (full-covars): -0.00044 PGS R2 (no covariates): 1e-05 [-0.00017, 0.0002] |
age, sex, UKB array type, Genotype PCs | — |
PPM005241 | PGS001389 (GBE_INI1319) |
PSS004822| East Asian Ancestry| 1,402 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Dried fruit intake | — | — | R²: 0.02296 [0.00893, 0.03699] Incremental R2 (full-covars): 0.00042 PGS R2 (no covariates): 0.00045 [-0.00156, 0.00245] |
age, sex, UKB array type, Genotype PCs | — |
PPM005242 | PGS001389 (GBE_INI1319) |
PSS004823| European Ancestry| 22,608 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Dried fruit intake | — | — | R²: 0.0347 [0.03024, 0.03917] Incremental R2 (full-covars): 0.00018 PGS R2 (no covariates): 0.00038 [-0.00011, 0.00086] |
age, sex, UKB array type, Genotype PCs | — |
PPM005243 | PGS001389 (GBE_INI1319) |
PSS004824| South Asian Ancestry| 6,844 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Dried fruit intake | — | — | R²: 0.01593 [0.01043, 0.02143] Incremental R2 (full-covars): -1e-05 PGS R2 (no covariates): 4e-05 [-0.00024, 0.00032] |
age, sex, UKB array type, Genotype PCs | — |
PPM005244 | PGS001389 (GBE_INI1319) |
PSS004825| European Ancestry| 62,203 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Dried fruit intake | — | — | R²: 0.0166 [0.01469, 0.01852] Incremental R2 (full-covars): 0.00087 PGS R2 (no covariates): 0.00107 [0.00058, 0.00157] |
age, sex, UKB array type, Genotype PCs | — |
PPM005225 | PGS001518 (GBE_INI100010) |
PSS004766| African Ancestry| 2,091 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Portion size | — | — | R²: 0.02984 [0.02169, 0.03798] Incremental R2 (full-covars): 0.00275 PGS R2 (no covariates): 0.00229 [-0.00003, 0.00461] |
age, sex, UKB array type, Genotype PCs | — |
PPM005226 | PGS001518 (GBE_INI100010) |
PSS004767| East Asian Ancestry| 613 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Portion size | — | — | R²: 0.08303 [0.05799, 0.10806] Incremental R2 (full-covars): 0.00287 PGS R2 (no covariates): 0.00511 [-0.00163, 0.01184] |
age, sex, UKB array type, Genotype PCs | — |
PPM005227 | PGS001518 (GBE_INI100010) |
PSS004768| European Ancestry| 11,475 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Portion size | — | — | R²: 0.05028 [0.04499, 0.05557] Incremental R2 (full-covars): 0.00227 PGS R2 (no covariates): 0.00184 [0.00078, 0.0029] |
age, sex, UKB array type, Genotype PCs | — |
PPM005228 | PGS001518 (GBE_INI100010) |
PSS004769| South Asian Ancestry| 2,331 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Portion size | — | — | R²: 0.02167 [0.01529, 0.02805] Incremental R2 (full-covars): -0.00034 PGS R2 (no covariates): 0.00013 [-0.00038, 0.00064] |
age, sex, UKB array type, Genotype PCs | — |
PPM005229 | PGS001518 (GBE_INI100010) |
PSS004770| European Ancestry| 29,044 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Portion size | — | — | R²: 0.05298 [0.04969, 0.05627] Incremental R2 (full-covars): 0.00155 PGS R2 (no covariates): 0.00164 [0.00103, 0.00226] |
age, sex, UKB array type, Genotype PCs | — |
PPM020156 | PGS004221 (PRS8_carbohydrate) |
PSS011297| European Ancestry| 397 individuals |
PGP000521 | Merino J et al. Mol Psychiatry (2023) |
Reported Trait: Number of 'green' beverages purchased per month | β: 1.1 [0.3, 1.9] | — | — | age, sex, education level (high school/some college, college degree, graduate degree), job type (administrative/service, craft/technicians, management/professionals, MDs/PhDs), BMI (18.5-24.9 kg/m2, 25.0-29.9 kg/m2, and ≥30 kg/m2), current smoking status (yes, no), and physical activity (categorized into low, intermediate, and high physical activity level) | — |
PPM020154 | PGS004221 (PRS8_carbohydrate) |
PSS011297| European Ancestry| 397 individuals |
PGP000521 | Merino J et al. Mol Psychiatry (2023) |
Reported Trait: Total workplace purchases per month | β: 2.3 [0.2, 4.3] | — | — | age, sex, education level (high school/some college, college degree, graduate degree), job type (administrative/service, craft/technicians, management/professionals, MDs/PhDs), BMI (18.5-24.9 kg/m2, 25.0-29.9 kg/m2, and ≥30 kg/m2), current smoking status (yes, no), and physical activity (categorized into low, intermediate, and high physical activity level) | — |
PPM020155 | PGS004221 (PRS8_carbohydrate) |
PSS011297| European Ancestry| 397 individuals |
PGP000521 | Merino J et al. Mol Psychiatry (2023) |
Reported Trait: Number of 'green' items purchased per month | β: 1.9 [0.5, 3.3] | — | — | age, sex, education level (high school/some college, college degree, graduate degree), job type (administrative/service, craft/technicians, management/professionals, MDs/PhDs), BMI (18.5-24.9 kg/m2, 25.0-29.9 kg/m2, and ≥30 kg/m2), current smoking status (yes, no), and physical activity (categorized into low, intermediate, and high physical activity level) | — |
PGS Sample Set ID (PSS) |
Phenotype Definitions and Methods | Participant Follow-up Time | Sample Numbers | Age of Study Participants | Sample Ancestry | Additional Ancestry Description | Cohort(s) | Additional Sample/Cohort Information |
---|---|---|---|---|---|---|---|---|
PSS003696 | — | — | [
|
— | African unspecified | — | UKB | — |
PSS003697 | — | — | [
|
— | East Asian | — | UKB | — |
PSS003698 | — | — | [
|
— | European | non-white British ancestry | UKB | — |
PSS003699 | — | — | [
|
— | South Asian | — | UKB | — |
PSS003700 | — | — | [
|
— | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS004766 | — | — | 2,091 individuals | — | African unspecified | — | UKB | — |
PSS004767 | — | — | 613 individuals | — | East Asian | — | UKB | — |
PSS004768 | — | — | 11,475 individuals | — | European | non-white British ancestry | UKB | — |
PSS004769 | — | — | 2,331 individuals | — | South Asian | — | UKB | — |
PSS004770 | — | — | 29,044 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS004811 | — | — | 5,840 individuals | — | African unspecified | — | UKB | — |
PSS004812 | — | — | 1,578 individuals | — | East Asian | — | UKB | — |
PSS004813 | — | — | 24,087 individuals | — | European | non-white British ancestry | UKB | — |
PSS004814 | — | — | 7,034 individuals | — | South Asian | — | UKB | — |
PSS004815 | — | — | 65,598 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS004816 | — | — | 6,032 individuals | — | African unspecified | — | UKB | — |
PSS004817 | — | — | 1,592 individuals | — | East Asian | — | UKB | — |
PSS004818 | — | — | 24,138 individuals | — | European | non-white British ancestry | UKB | — |
PSS004819 | — | — | 7,340 individuals | — | South Asian | — | UKB | — |
PSS004820 | — | — | 65,281 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS004821 | — | — | 5,684 individuals | — | African unspecified | — | UKB | — |
PSS004822 | — | — | 1,402 individuals | — | East Asian | — | UKB | — |
PSS004823 | — | — | 22,608 individuals | — | European | non-white British ancestry | UKB | — |
PSS004824 | — | — | 6,844 individuals | — | South Asian | — | UKB | — |
PSS004825 | — | — | 62,203 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS003810 | — | — | [
|
— | African unspecified | — | UKB | — |
PSS003811 | — | — | [
|
— | East Asian | — | UKB | — |
PSS003812 | — | — | [
|
— | European | non-white British ancestry | UKB | — |
PSS003813 | — | — | [
|
— | South Asian | — | UKB | — |
PSS003814 | — | — | [
|
— | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS011297 | — | — | 397 individuals, 19.1 % Male samples |
— | European | — | ChooseWell 365 | — |
PSS004841 | — | — | 5,979 individuals | — | African unspecified | — | UKB | — |
PSS004842 | — | — | 1,557 individuals | — | East Asian | — | UKB | — |
PSS004843 | — | — | 24,277 individuals | — | European | non-white British ancestry | UKB | — |
PSS004844 | — | — | 7,412 individuals | — | South Asian | — | UKB | — |
PSS004845 | — | — | 66,112 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS004846 | — | — | 5,708 individuals | — | African unspecified | — | UKB | — |
PSS004847 | — | — | 1,426 individuals | — | East Asian | — | UKB | — |
PSS004848 | — | — | 23,372 individuals | — | European | non-white British ancestry | UKB | — |
PSS004849 | — | — | 7,023 individuals | — | South Asian | — | UKB | — |
PSS004850 | — | — | 64,778 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS004861 | — | — | 6,061 individuals | — | African unspecified | — | UKB | — |
PSS004862 | — | — | 1,590 individuals | — | East Asian | — | UKB | — |
PSS004863 | — | — | 23,579 individuals | — | European | non-white British ancestry | UKB | — |
PSS004864 | — | — | 7,550 individuals | — | South Asian | — | UKB | — |
PSS004865 | — | — | 62,737 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS004866 | — | — | 6,271 individuals | — | African unspecified | — | UKB | — |
PSS004867 | — | — | 1,585 individuals | — | East Asian | — | UKB | — |
PSS004868 | — | — | 24,750 individuals | — | European | non-white British ancestry | UKB | — |
PSS004869 | — | — | 7,343 individuals | — | South Asian | — | UKB | — |
PSS004870 | — | — | 67,259 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS003869 | — | — | [
|
— | African unspecified | — | UKB | — |
PSS003870 | — | — | [
|
— | East Asian | — | UKB | — |
PSS003871 | — | — | [
|
— | European | non-white British ancestry | UKB | — |
PSS003872 | — | — | [
|
— | South Asian | — | UKB | — |
PSS003873 | — | — | [
|
— | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS003909 | — | — | [
|
— | African unspecified | — | UKB | — |
PSS003910 | — | — | [
|
— | East Asian | — | UKB | — |
PSS003911 | — | — | [
|
— | European | non-white British ancestry | UKB | — |
PSS003912 | — | — | [
|
— | South Asian | — | UKB | — |
PSS003913 | — | — | [
|
— | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS007506 | — | — | 6,428 individuals | — | African unspecified | — | UKB | — |
PSS007507 | — | — | 1,671 individuals | — | East Asian | — | UKB | — |
PSS007508 | — | — | 24,900 individuals | — | European | non-white British ancestry | UKB | — |
PSS007509 | — | — | 7,681 individuals | — | South Asian | — | UKB | — |
PSS007510 | — | — | 67,416 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS003944 | — | — | [
|
— | African unspecified | — | UKB | — |
PSS003945 | — | — | [
|
— | East Asian | — | UKB | — |
PSS003946 | — | — | [
|
— | European | non-white British ancestry | UKB | — |
PSS003947 | — | — | [
|
— | South Asian | — | UKB | — |
PSS003948 | — | — | [
|
— | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS003959 | — | — | [
|
— | African unspecified | — | UKB | — |
PSS003960 | — | — | [
|
— | East Asian | — | UKB | — |
PSS003961 | — | — | [
|
— | European | non-white British ancestry | UKB | — |
PSS003962 | — | — | [
|
— | South Asian | — | UKB | — |
PSS003963 | — | — | [
|
— | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS007546 | — | — | 6,311 individuals | — | African unspecified | — | UKB | — |
PSS007548 | — | — | 24,852 individuals | — | European | non-white British ancestry | UKB | — |
PSS007549 | — | — | 7,555 individuals | — | South Asian | — | UKB | — |
PSS007551 | — | — | 6,377 individuals | — | African unspecified | — | UKB | — |
PSS007552 | — | — | 1,655 individuals | — | East Asian | — | UKB | — |
PSS007553 | — | — | 24,847 individuals | — | European | non-white British ancestry | UKB | — |
PSS007554 | — | — | 7,623 individuals | — | South Asian | — | UKB | — |
PSS007555 | — | — | 67,313 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS007556 | — | — | 6,271 individuals | — | African unspecified | — | UKB | — |
PSS007557 | — | — | 1,641 individuals | — | East Asian | — | UKB | — |
PSS007558 | — | — | 24,795 individuals | — | European | non-white British ancestry | UKB | — |
PSS007559 | — | — | 7,508 individuals | — | South Asian | — | UKB | — |
PSS007560 | — | — | 67,208 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS007561 | — | — | 5,882 individuals | — | African unspecified | — | UKB | — |
PSS007562 | — | — | 1,552 individuals | — | East Asian | — | UKB | — |
PSS007563 | — | — | 24,143 individuals | — | European | non-white British ancestry | UKB | — |
PSS007564 | — | — | 7,212 individuals | — | South Asian | — | UKB | — |
PSS007565 | — | — | 65,948 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS007547 | — | — | 1,642 individuals | — | East Asian | — | UKB | — |
PSS007550 | — | — | 67,321 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |