Trait: hematological measurement

Experimental Factor Ontology (EFO) Information
Identifier EFO_0004503
Description A measurement quantifying some blood cell, or component.
Trait category
Hematological measurement
Child trait(s) 29 child traits

Associated Polygenic Score(s)

Filter PGS by Participant Ancestry
Individuals included in:
G - Source of Variant Associations (GWAS)
D - Score Development/Training
E - PGS Evaluation
List of ancestries includes:
Display options:
Ancestry legend
Multi-ancestry (including European)
Multi-ancestry (excluding European)
African
East Asian
South Asian
Additional Asian Ancestries
European
Greater Middle Eastern
Hispanic or Latin American
Additional Diverse Ancestries
Not Reported
Note: This table shows all PGS for "hematological measurement" and any child terms of this trait in the EFO hierarchy by default.
Polygenic Score ID & Name PGS Publication ID (PGP) Reported Trait Mapped Trait(s) (Ontology) Number of Variants Ancestry distribution
GWAS
Dev
Eval
Scoring File (FTP Link)
PGS000088
(baso)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Basophil count basophil count 9,121
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000088/ScoringFiles/PGS000088.txt.gz
PGS000089
(baso_p)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Basophil percentage of white cells basophil percentage of leukocytes 5,248
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000089/ScoringFiles/PGS000089.txt.gz
PGS000090
(eo)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Eosinophil count eosinophil count 22,949
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000090/ScoringFiles/PGS000090.txt.gz
PGS000091
(eo_p)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Eosinophil percentage of white cells eosinophil percentage of leukocytes 24,406
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000091/ScoringFiles/PGS000091.txt.gz
PGS000092
(hct)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Hematocrit hematocrit 28,214
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000092/ScoringFiles/PGS000092.txt.gz
PGS000093
(hgb)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Hemoglobin concentration hemoglobin measurement 25,090
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000093/ScoringFiles/PGS000093.txt.gz
PGS000094
(hlr)
PGP000051 |
Xu Y et al. Cell Genom (2022)
High light scatter reticulocyte count reticulocyte count 25,493
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000094/ScoringFiles/PGS000094.txt.gz
PGS000095
(hlr_p)
PGP000051 |
Xu Y et al. Cell Genom (2022)
High light scatter reticulocyte percentage of red cells reticulocyte count 21,957
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000095/ScoringFiles/PGS000095.txt.gz
PGS000096
(irf)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Immature fraction of reticulocytes reticulocyte count 17,850
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000096/ScoringFiles/PGS000096.txt.gz
PGS000097
(lymph)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Lymphocyte count lymphocyte count 24,646
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000097/ScoringFiles/PGS000097.txt.gz
PGS000098
(lymph_p)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Lymphocyte percentage of white cells lymphocyte percentage of leukocytes 22,363
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000098/ScoringFiles/PGS000098.txt.gz
PGS000099
(mch)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 27,081
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000099/ScoringFiles/PGS000099.txt.gz
PGS000100
(mchc)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Mean corpuscular hemoglobin concentration mean corpuscular hemoglobin concentration 11,832
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000100/ScoringFiles/PGS000100.txt.gz
PGS000101
(mcv)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Mean corpuscular volume mean corpuscular volume 25,001
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000101/ScoringFiles/PGS000101.txt.gz
PGS000102
(mono)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Monocyte count monocyte count 28,162
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000102/ScoringFiles/PGS000102.txt.gz
PGS000103
(mono_p)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Monocyte percentage of white cells monocyte percentage of leukocytes 22,843
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000103/ScoringFiles/PGS000103.txt.gz
PGS000104
(mpv)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Mean platelet volume mean platelet volume 25,745
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000104/ScoringFiles/PGS000104.txt.gz
PGS000105
(neut)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Neutrophil count neutrophil count 23,864
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000105/ScoringFiles/PGS000105.txt.gz
PGS000106
(neut_p)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Neutrophil percentage of white cells neutrophil percentage of leukocytes 22,049
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000106/ScoringFiles/PGS000106.txt.gz
PGS000107
(pct)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Platelet crit platelet crit 30,459
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000107/ScoringFiles/PGS000107.txt.gz
PGS000108
(pdw)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Platelet distribution width platelet component distribution width 25,995
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000108/ScoringFiles/PGS000108.txt.gz
PGS000109
(plt)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Platelet count platelet count 26,683
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000109/ScoringFiles/PGS000109.txt.gz
PGS000110
(rbc)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Red blood cell count erythrocyte count 23,242
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000110/ScoringFiles/PGS000110.txt.gz
PGS000111
(ret)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reticulocyte count reticulocyte count 26,077
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000111/ScoringFiles/PGS000111.txt.gz
PGS000112
(ret_p)
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reticulocyte fraction of red cells reticulocyte count 25,939
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000112/ScoringFiles/PGS000112.txt.gz
PGS000113
(wbc)
PGP000051 |
Xu Y et al. Cell Genom (2022)
White blood cell count leukocyte count 28,383
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000113/ScoringFiles/PGS000113.txt.gz
PGS000127
(GS-E-EUR)
PGP000064 |
Wheeler E et al. PLoS Med (2017)
HbA1c HbA1c measurement 21
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000127/ScoringFiles/PGS000127.txt.gz
PGS000128
(GS-E-AFR)
PGP000064 |
Wheeler E et al. PLoS Med (2017)
HbA1c HbA1c measurement 22
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000128/ScoringFiles/PGS000128.txt.gz
PGS000129
(GS-E-EAS)
PGP000064 |
Wheeler E et al. PLoS Med (2017)
HbA1c HbA1c measurement 17
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000129/ScoringFiles/PGS000129.txt.gz
PGS000130
(GS-G-EUR)
PGP000064 |
Wheeler E et al. PLoS Med (2017)
HbA1c HbA1c measurement 19
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000130/ScoringFiles/PGS000130.txt.gz
PGS000131
(GS-G-AFR)
PGP000064 |
Wheeler E et al. PLoS Med (2017)
HbA1c HbA1c measurement 19
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000131/ScoringFiles/PGS000131.txt.gz
PGS000132
(GS-G-EAS)
PGP000064 |
Wheeler E et al. PLoS Med (2017)
HbA1c HbA1c measurement 19
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000132/ScoringFiles/PGS000132.txt.gz
PGS000163
(baso)
PGP000078 |
Vuckovic D et al. Cell (2020)
Basophil count basophil count 185
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000163/ScoringFiles/PGS000163.txt.gz
PGS000164
(baso_p)
PGP000078 |
Vuckovic D et al. Cell (2020)
Basophil percentage of white cells basophil percentage of leukocytes 150
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000164/ScoringFiles/PGS000164.txt.gz
PGS000165
(eo)
PGP000078 |
Vuckovic D et al. Cell (2020)
Eosinophil count eosinophil count 607
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000165/ScoringFiles/PGS000165.txt.gz
PGS000166
(eo_p)
PGP000078 |
Vuckovic D et al. Cell (2020)
Eosinophil percentage of white cells eosinophil percentage of leukocytes 571
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000166/ScoringFiles/PGS000166.txt.gz
PGS000167
(hct)
PGP000078 |
Vuckovic D et al. Cell (2020)
Hematocrit hematocrit 502
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000167/ScoringFiles/PGS000167.txt.gz
PGS000168
(hgb)
PGP000078 |
Vuckovic D et al. Cell (2020)
Hemoglobin concentration hemoglobin measurement 515
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000168/ScoringFiles/PGS000168.txt.gz
PGS000169
(hlr)
PGP000078 |
Vuckovic D et al. Cell (2020)
High light scatter reticulocyte count reticulocyte count 570
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000169/ScoringFiles/PGS000169.txt.gz
PGS000170
(hlr_p)
PGP000078 |
Vuckovic D et al. Cell (2020)
High light scatter reticulocyte percentage of red cells reticulocyte count 566
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000170/ScoringFiles/PGS000170.txt.gz
PGS000171
(irf)
PGP000078 |
Vuckovic D et al. Cell (2020)
Immature fraction of reticulocytes reticulocyte count 372
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000171/ScoringFiles/PGS000171.txt.gz
PGS000172
(lymph)
PGP000078 |
Vuckovic D et al. Cell (2020)
Lymphocyte count lymphocyte count 621
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000172/ScoringFiles/PGS000172.txt.gz
PGS000173
(lymph_p)
PGP000078 |
Vuckovic D et al. Cell (2020)
Lymphocyte percentage of white cells lymphocyte percentage of leukocytes 472
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000173/ScoringFiles/PGS000173.txt.gz
PGS000174
(mch)
PGP000078 |
Vuckovic D et al. Cell (2020)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 628
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000174/ScoringFiles/PGS000174.txt.gz
PGS000175
(mchc)
PGP000078 |
Vuckovic D et al. Cell (2020)
Mean corpuscular hemoglobin concentration mean corpuscular hemoglobin concentration 224
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000175/ScoringFiles/PGS000175.txt.gz
PGS000176
(mcv)
PGP000078 |
Vuckovic D et al. Cell (2020)
Mean corpuscular volume mean corpuscular volume 685
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000176/ScoringFiles/PGS000176.txt.gz
PGS000177
(mono)
PGP000078 |
Vuckovic D et al. Cell (2020)
Monocyte count monocyte count 638
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000177/ScoringFiles/PGS000177.txt.gz
PGS000178
(mono_p)
PGP000078 |
Vuckovic D et al. Cell (2020)
Monocyte percentage of white cells monocyte percentage of leukocytes 549
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000178/ScoringFiles/PGS000178.txt.gz
PGS000179
(mpv)
PGP000078 |
Vuckovic D et al. Cell (2020)
Mean platelet volume mean platelet volume 654
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000179/ScoringFiles/PGS000179.txt.gz
PGS000180
(mrv)
PGP000078 |
Vuckovic D et al. Cell (2020)
Mean reticulocyte volume mean reticulocyte volume 629
-
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000180/ScoringFiles/PGS000180.txt.gz
PGS000181
(mscv)
PGP000078 |
Vuckovic D et al. Cell (2020)
Mean sphered corpuscular volume mean corpuscular volume 761
-
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000181/ScoringFiles/PGS000181.txt.gz
PGS000182
(neut)
PGP000078 |
Vuckovic D et al. Cell (2020)
Neutrophil count neutrophil count 492
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000182/ScoringFiles/PGS000182.txt.gz
PGS000183
(neut_p)
PGP000078 |
Vuckovic D et al. Cell (2020)
Neutrophil percentage of white cells neutrophil percentage of leukocytes 437
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000183/ScoringFiles/PGS000183.txt.gz
PGS000184
(pct)
PGP000078 |
Vuckovic D et al. Cell (2020)
Platelet crit platelet crit 700
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000184/ScoringFiles/PGS000184.txt.gz
PGS000185
(pdw)
PGP000078 |
Vuckovic D et al. Cell (2020)
Platelet distribution width platelet component distribution width 555
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000185/ScoringFiles/PGS000185.txt.gz
PGS000186
(plt)
PGP000078 |
Vuckovic D et al. Cell (2020)
Platelet count platelet count 739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000186/ScoringFiles/PGS000186.txt.gz
PGS000187
(rbc)
PGP000078 |
Vuckovic D et al. Cell (2020)
Red blood cell count erythrocyte count 678
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000187/ScoringFiles/PGS000187.txt.gz
PGS000188
(rdw)
PGP000078 |
Vuckovic D et al. Cell (2020)
Red cell distribution width Red cell distribution width 546
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000188/ScoringFiles/PGS000188.txt.gz
PGS000189
(ret)
PGP000078 |
Vuckovic D et al. Cell (2020)
Reticulocyte count reticulocyte count 555
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000189/ScoringFiles/PGS000189.txt.gz
PGS000190
(ret_p)
PGP000078 |
Vuckovic D et al. Cell (2020)
Reticulocyte fraction of red cells reticulocyte count 537
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000190/ScoringFiles/PGS000190.txt.gz
PGS000191
(wbc)
PGP000078 |
Vuckovic D et al. Cell (2020)
White blood cell count leukocyte count 636
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000191/ScoringFiles/PGS000191.txt.gz
PGS000304
(GRS43_HbA1c)
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
HbA1c HbA1c measurement 43
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000304/ScoringFiles/PGS000304.txt.gz
PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
HbA1c [mmol/mol] HbA1c measurement 14,658
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000685/ScoringFiles/PGS000685.txt.gz - Check Terms/Licenses
PGS000698
(snpnet.Total_protein)
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Total protein [g/L] total blood protein measurement 16,420
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000698/ScoringFiles/PGS000698.txt.gz - Check Terms/Licenses
PGS000987
(GBE_INI30260)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Mean reticulocyte volume mean reticulocyte volume 13,277
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000987/ScoringFiles/PGS000987.txt.gz
PGS000988
(GBE_INI30290)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
High light scatter reticulocyte percentage reticulocyte measurement 7,184
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000988/ScoringFiles/PGS000988.txt.gz
PGS000989
(GBE_INI30240)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reticulocyte percentage reticulocyte measurement 6,251
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000989/ScoringFiles/PGS000989.txt.gz
PGS001076
(GBE_INI30210)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Eosinophil percentage eosinophil percentage of leukocytes 12,563
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001076/ScoringFiles/PGS001076.txt.gz
PGS001077
(GBE_INI30200)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Neutrophil percentage neutrophil percentage of leukocytes 13,703
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001077/ScoringFiles/PGS001077.txt.gz
PGS001078
(GBE_INI30190)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Monocyte percentage monocyte percentage of leukocytes 8,762
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001078/ScoringFiles/PGS001078.txt.gz
PGS001079
(GBE_INI30110)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Platelet distribution width platelet component distribution width 18,814
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001079/ScoringFiles/PGS001079.txt.gz
PGS001152
(GBE_INI30070)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Red blood cell distribution width Red cell distribution width 10,179
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001152/ScoringFiles/PGS001152.txt.gz
PGS001163
(GBE_INI30130)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Monocyte count monocyte count 9,323
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001163/ScoringFiles/PGS001163.txt.gz
PGS001172
(GBE_INI30150)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Eosinophil count eosinophil count 12,579
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001172/ScoringFiles/PGS001172.txt.gz
PGS001173
(GBE_INI30140)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Neutrophil count neutrophil count 15,578
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001173/ScoringFiles/PGS001173.txt.gz
PGS001199
(GBE_INI30120)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Lymphocyte count lymphocyte count 4,212
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001199/ScoringFiles/PGS001199.txt.gz
PGS001200
(GBE_INI30100)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Mean platelet volume mean platelet volume 24,114
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001200/ScoringFiles/PGS001200.txt.gz
PGS001218
(GBE_INI30060)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Mean corpuscular hemoglobin concentration mean corpuscular hemoglobin concentration 2,359
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001218/ScoringFiles/PGS001218.txt.gz
PGS001219
(GBE_INI30050)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 13,003
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001219/ScoringFiles/PGS001219.txt.gz
PGS001220
(GBE_INI30040)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Mean corpuscular volume mean corpuscular volume 17,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001220/ScoringFiles/PGS001220.txt.gz
PGS001225
(GBE_INI30030)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Percentage of hematocrit hematocrit 15,721
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001225/ScoringFiles/PGS001225.txt.gz
PGS001238
(GBE_INI30080)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Platelet count platelet count 24,893
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001238/ScoringFiles/PGS001238.txt.gz
PGS001239
(GBE_INI30000)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
White blood cell count leukocyte count 13,785
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001239/ScoringFiles/PGS001239.txt.gz
PGS001240
(GBE_INI30010)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Red blood cell count erythrocyte count 20,480
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001240/ScoringFiles/PGS001240.txt.gz
PGS001352
(MAGICTA_EUR_PGS_HbA1c)
PGP000246 |
Chen J et al. Nat Genet (2021)
Glycated haemoglobin levels (HbA1c) HbA1c measurement 1,018,836
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001352/ScoringFiles/PGS001352.txt.gz
PGS001377
(GBE_INI30220)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Basophil percentage basophil percentage of leukocytes 3,205
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001377/ScoringFiles/PGS001377.txt.gz
PGS001378
(GBE_INI30160)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Basophil count basophil count 3,050
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001378/ScoringFiles/PGS001378.txt.gz
PGS001400
(GBE_INI30020)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Haemoglobin concentration hemoglobin measurement 15,602
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001400/ScoringFiles/PGS001400.txt.gz
PGS001406
(GBE_INI30300)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
High light scatter reticulocyte count reticulocyte measurement 15,856
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001406/ScoringFiles/PGS001406.txt.gz
PGS001408
(GBE_INI30280)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Immature reticulocyte fraction Immature Reticulocyte Fraction Measurement 10,871
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001408/ScoringFiles/PGS001408.txt.gz
PGS001414
(GBE_INI30180)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Lymphocyte % lymphocyte percentage of leukocytes 15,143
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001414/ScoringFiles/PGS001414.txt.gz
PGS001517
(GBE_INI30090)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Platelet crit platelet crit 20,910
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001517/ScoringFiles/PGS001517.txt.gz
PGS001528
(GBE_INI30250)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reticulocyte count reticulocyte count 6,262
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001528/ScoringFiles/PGS001528.txt.gz
PGS001908
(portability-PLR_erythrocyte_width)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Red blood cell (erythrocyte) distribution width Red cell distribution width 32,431
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001908/ScoringFiles/PGS001908.txt.gz
PGS001909
(portability-PLR_erythrocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Red blood cell (erythrocyte) count erythrocyte count 81,887
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001909/ScoringFiles/PGS001909.txt.gz
PGS001925
(portability-PLR_haematocrit_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Haematocrit percentage hematocrit 67,571
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001925/ScoringFiles/PGS001925.txt.gz
PGS001926
(portability-PLR_haemoglobin)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Haemoglobin concentration hemoglobin measurement 69,467
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001926/ScoringFiles/PGS001926.txt.gz
PGS001930
(portability-PLR_immature_reticulocyte_frac)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Immature reticulocyte fraction Immature Reticulocyte Fraction Measurement 39,162
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001930/ScoringFiles/PGS001930.txt.gz
PGS001949
(portability-PLR_log_eosinophil_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Eosinophil percentage eosinophil percentage of leukocytes 9,236
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001949/ScoringFiles/PGS001949.txt.gz
PGS001953
(portability-PLR_log_HbA1c)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Glycated haemoglobin (HbA1c) HbA1c measurement 46,566
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001953/ScoringFiles/PGS001953.txt.gz
PGS001959
(portability-PLR_log_HLR_reticulocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
High light scatter reticulocyte count reticulocyte measurement 78,803
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001959/ScoringFiles/PGS001959.txt.gz
PGS001962
(portability-PLR_log_leukocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
White blood cell (leukocyte) count leukocyte count 80,228
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001962/ScoringFiles/PGS001962.txt.gz
PGS001965
(portability-PLR_log_lymphocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Lymphocyte count lymphocyte count 76,535
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001965/ScoringFiles/PGS001965.txt.gz
PGS001968
(portability-PLR_log_monocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Monocyte count monocyte count 46,673
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001968/ScoringFiles/PGS001968.txt.gz
PGS001969
(portability-PLR_log_neutrophil)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Neutrophil count neutrophil count 71,566
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001969/ScoringFiles/PGS001969.txt.gz
PGS001970
(portability-PLR_log_platelet_crit)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Platelet crit platelet crit 56,402
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001970/ScoringFiles/PGS001970.txt.gz
PGS001971
(portability-PLR_log_platelet_volume)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean platelet (thrombocyte) volume mean platelet volume 65,450
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001971/ScoringFiles/PGS001971.txt.gz
PGS001972
(portability-PLR_log_platelet_width)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Platelet distribution width platelet component distribution width 46,157
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001972/ScoringFiles/PGS001972.txt.gz
PGS001973
(portability-PLR_log_platelet)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Platelet count platelet count 60,665
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001973/ScoringFiles/PGS001973.txt.gz
PGS001976
(portability-PLR_log_reticulocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reticulocyte count reticulocyte count 75,033
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001976/ScoringFiles/PGS001976.txt.gz
PGS001986
(portability-PLR_lymphocyte_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Lymphocyte percentage lymphocyte percentage of leukocytes 66,778
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001986/ScoringFiles/PGS001986.txt.gz
PGS001989
(portability-PLR_MCH)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 44,174
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001989/ScoringFiles/PGS001989.txt.gz
PGS001990
(portability-PLR_MCV)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean corpuscular volume mean corpuscular volume 47,916
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001990/ScoringFiles/PGS001990.txt.gz
PGS001991
(portability-PLR_monocyte_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Monocyte percentage monocyte percentage of leukocytes 41,887
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001991/ScoringFiles/PGS001991.txt.gz
PGS001997
(portability-PLR_neutrophil_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Neutrophil percentage neutrophil percentage of leukocytes 65,022
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001997/ScoringFiles/PGS001997.txt.gz
PGS002001
(portability-PLR_protein)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Total protein total blood protein measurement 69,557
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002001/ScoringFiles/PGS002001.txt.gz
PGS002003
(portability-PLR_reticulocyte_volume)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean reticulocyte volume mean reticulocyte volume 24,536
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002003/ScoringFiles/PGS002003.txt.gz
PGS002008
(portability-PLR_sphered_cell_volume)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean sphered cell volume hematological measurement 50,360
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002008/ScoringFiles/PGS002008.txt.gz
PGS002122
(portability-ldpred2_erythrocyte_width)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Red blood cell (erythrocyte) distribution width Red cell distribution width 543,714
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002122/ScoringFiles/PGS002122.txt.gz
PGS002123
(portability-ldpred2_erythrocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Red blood cell (erythrocyte) count erythrocyte count 788,123
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002123/ScoringFiles/PGS002123.txt.gz
PGS002141
(portability-ldpred2_haematocrit_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Haematocrit percentage hematocrit 797,804
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002141/ScoringFiles/PGS002141.txt.gz
PGS002142
(portability-ldpred2_haemoglobin)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Haemoglobin concentration hemoglobin measurement 786,386
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002142/ScoringFiles/PGS002142.txt.gz
PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Immature reticulocyte fraction Immature Reticulocyte Fraction Measurement 664,696
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002147/ScoringFiles/PGS002147.txt.gz
PGS002167
(portability-ldpred2_log_eosinophil_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Eosinophil percentage eosinophil percentage of leukocytes 593,459
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002167/ScoringFiles/PGS002167.txt.gz
PGS002171
(portability-ldpred2_log_HbA1c)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Glycated haemoglobin (HbA1c) HbA1c measurement 736,730
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002171/ScoringFiles/PGS002171.txt.gz
PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
High light scatter reticulocyte count reticulocyte measurement 780,048
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002177/ScoringFiles/PGS002177.txt.gz
PGS002180
(portability-ldpred2_log_leukocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
White blood cell (leukocyte) count leukocyte count 846,337
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002180/ScoringFiles/PGS002180.txt.gz
PGS002183
(portability-ldpred2_log_lymphocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Lymphocyte count lymphocyte count 814,921
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002183/ScoringFiles/PGS002183.txt.gz
PGS002186
(portability-ldpred2_log_monocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Monocyte count monocyte count 641,455
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002186/ScoringFiles/PGS002186.txt.gz
PGS002187
(portability-ldpred2_log_neutrophil)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Neutrophil count neutrophil count 803,767
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002187/ScoringFiles/PGS002187.txt.gz
PGS002188
(portability-ldpred2_log_platelet_crit)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Platelet crit platelet crit 703,576
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002188/ScoringFiles/PGS002188.txt.gz
PGS002189
(portability-ldpred2_log_platelet_volume)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean platelet (thrombocyte) volume mean platelet volume 462,934
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002189/ScoringFiles/PGS002189.txt.gz
PGS002190
(portability-ldpred2_log_platelet_width)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Platelet distribution width platelet component distribution width 482,649
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002190/ScoringFiles/PGS002190.txt.gz
PGS002191
(portability-ldpred2_log_platelet)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Platelet count platelet count 663,591
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002191/ScoringFiles/PGS002191.txt.gz
PGS002194
(portability-ldpred2_log_reticulocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reticulocyte count reticulocyte count 773,305
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002194/ScoringFiles/PGS002194.txt.gz
PGS002203
(portability-ldpred2_lymphocyte_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Lymphocyte percentage lymphocyte percentage of leukocytes 775,312
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002203/ScoringFiles/PGS002203.txt.gz
PGS002206
(portability-ldpred2_MCH)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 504,929
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002206/ScoringFiles/PGS002206.txt.gz
PGS002207
(portability-ldpred2_MCV)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean corpuscular volume mean corpuscular volume 564,228
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002207/ScoringFiles/PGS002207.txt.gz
PGS002208
(portability-ldpred2_monocyte_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Monocyte percentage monocyte percentage of leukocytes 544,905
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002208/ScoringFiles/PGS002208.txt.gz
PGS002214
(portability-ldpred2_neutrophil_perc)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Neutrophil percentage neutrophil percentage of leukocytes 769,542
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002214/ScoringFiles/PGS002214.txt.gz
PGS002219
(portability-ldpred2_protein)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Total protein total blood protein measurement 819,013
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002219/ScoringFiles/PGS002219.txt.gz
PGS002221
(portability-ldpred2_reticulocyte_volume)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean reticulocyte volume mean reticulocyte volume 523,074
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002221/ScoringFiles/PGS002221.txt.gz
PGS002227
(portability-ldpred2_sphered_cell_volume)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Mean sphered cell volume hematological measurement 630,576
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002227/ScoringFiles/PGS002227.txt.gz
PGS002325
(blood_EOSINOPHIL_COUNT.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002325/ScoringFiles/PGS002325.txt.gz
PGS002331
(biochemistry_HbA1c.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002331/ScoringFiles/PGS002331.txt.gz
PGS002333
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
High light scatter reticulocyte count reticulocyte count 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002333/ScoringFiles/PGS002333.txt.gz
PGS002338
(blood_LYMPHOCYTE_COUNT.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002338/ScoringFiles/PGS002338.txt.gz
PGS002339
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002339/ScoringFiles/PGS002339.txt.gz
PGS002340
(blood_MEAN_PLATELET_VOL.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean platelet volume mean platelet volume 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002340/ScoringFiles/PGS002340.txt.gz
PGS002341
(blood_MONOCYTE_COUNT.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002341/ScoringFiles/PGS002341.txt.gz
PGS002343
(blood_PLATELET_COUNT.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002343/ScoringFiles/PGS002343.txt.gz
PGS002345
(blood_RED_COUNT.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002345/ScoringFiles/PGS002345.txt.gz
PGS002346
(blood_RBC_DISTRIB_WIDTH.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell distribution width Red cell distribution width 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002346/ScoringFiles/PGS002346.txt.gz
PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002357/ScoringFiles/PGS002357.txt.gz
PGS002364
(blood_EOSINOPHIL_COUNT.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 920,929
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002364/ScoringFiles/PGS002364.txt.gz
PGS002367
(biochemistry_HbA1c.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 920,924
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002367/ScoringFiles/PGS002367.txt.gz
PGS002370
(blood_LYMPHOCYTE_COUNT.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 920,935
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002370/ScoringFiles/PGS002370.txt.gz
PGS002371
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 920,923
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002371/ScoringFiles/PGS002371.txt.gz
PGS002372
(blood_MONOCYTE_COUNT.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 920,930
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002372/ScoringFiles/PGS002372.txt.gz
PGS002373
(blood_PLATELET_COUNT.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 920,923
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002373/ScoringFiles/PGS002373.txt.gz
PGS002374
(blood_RED_COUNT.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 920,935
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002374/ScoringFiles/PGS002374.txt.gz
PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 920,936
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002380/ScoringFiles/PGS002380.txt.gz
PGS002397
(blood_EOSINOPHIL_COUNT.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 15,667
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002397/ScoringFiles/PGS002397.txt.gz
PGS002403
(biochemistry_HbA1c.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 11,872
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002403/ScoringFiles/PGS002403.txt.gz
PGS002405
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
High light scatter reticulocyte count reticulocyte count 16,031
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002405/ScoringFiles/PGS002405.txt.gz
PGS002410
(blood_LYMPHOCYTE_COUNT.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 14,889
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002410/ScoringFiles/PGS002410.txt.gz
PGS002411
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 22,349
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002411/ScoringFiles/PGS002411.txt.gz
PGS002412
(blood_MEAN_PLATELET_VOL.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean platelet volume mean platelet volume 36,285
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002412/ScoringFiles/PGS002412.txt.gz
PGS002413
(blood_MONOCYTE_COUNT.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 17,405
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002413/ScoringFiles/PGS002413.txt.gz
PGS002415
(blood_PLATELET_COUNT.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 27,345
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002415/ScoringFiles/PGS002415.txt.gz
PGS002417
(blood_RED_COUNT.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 18,514
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002417/ScoringFiles/PGS002417.txt.gz
PGS002418
(blood_RBC_DISTRIB_WIDTH.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell distribution width Red cell distribution width 16,996
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002418/ScoringFiles/PGS002418.txt.gz
PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 13,898
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002429/ScoringFiles/PGS002429.txt.gz
PGS002446
(blood_EOSINOPHIL_COUNT.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 35,512
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002446/ScoringFiles/PGS002446.txt.gz
PGS002452
(biochemistry_HbA1c.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 30,603
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002452/ScoringFiles/PGS002452.txt.gz
PGS002454
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
High light scatter reticulocyte count reticulocyte count 37,335
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002454/ScoringFiles/PGS002454.txt.gz
PGS002459
(blood_LYMPHOCYTE_COUNT.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 36,117
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002459/ScoringFiles/PGS002459.txt.gz
PGS002460
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 44,827
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002460/ScoringFiles/PGS002460.txt.gz
PGS002461
(blood_MEAN_PLATELET_VOL.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean platelet volume mean platelet volume 65,237
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002461/ScoringFiles/PGS002461.txt.gz
PGS002462
(blood_MONOCYTE_COUNT.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 38,012
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002462/ScoringFiles/PGS002462.txt.gz
PGS002464
(blood_PLATELET_COUNT.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 54,318
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002464/ScoringFiles/PGS002464.txt.gz
PGS002466
(blood_RED_COUNT.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 41,471
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002466/ScoringFiles/PGS002466.txt.gz
PGS002467
(blood_RBC_DISTRIB_WIDTH.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell distribution width Red cell distribution width 36,619
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002467/ScoringFiles/PGS002467.txt.gz
PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 35,005
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002478/ScoringFiles/PGS002478.txt.gz
PGS002495
(blood_EOSINOPHIL_COUNT.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 135,927
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002495/ScoringFiles/PGS002495.txt.gz
PGS002501
(biochemistry_HbA1c.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 128,425
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002501/ScoringFiles/PGS002501.txt.gz
PGS002503
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
High light scatter reticulocyte count reticulocyte count 143,701
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002503/ScoringFiles/PGS002503.txt.gz
PGS002508
(blood_LYMPHOCYTE_COUNT.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 140,957
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002508/ScoringFiles/PGS002508.txt.gz
PGS002509
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 151,362
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002509/ScoringFiles/PGS002509.txt.gz
PGS002510
(blood_MEAN_PLATELET_VOL.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean platelet volume mean platelet volume 183,887
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002510/ScoringFiles/PGS002510.txt.gz
PGS002511
(blood_MONOCYTE_COUNT.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 140,833
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002511/ScoringFiles/PGS002511.txt.gz
PGS002513
(blood_PLATELET_COUNT.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 170,052
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002513/ScoringFiles/PGS002513.txt.gz
PGS002515
(blood_RED_COUNT.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 150,047
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002515/ScoringFiles/PGS002515.txt.gz
PGS002516
(blood_RBC_DISTRIB_WIDTH.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell distribution width Red cell distribution width 136,154
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002516/ScoringFiles/PGS002516.txt.gz
PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 141,866
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002527/ScoringFiles/PGS002527.txt.gz
PGS002544
(blood_EOSINOPHIL_COUNT.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 6,683
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002544/ScoringFiles/PGS002544.txt.gz
PGS002550
(biochemistry_HbA1c.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 4,546
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002550/ScoringFiles/PGS002550.txt.gz
PGS002552
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
High light scatter reticulocyte count reticulocyte count 6,655
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002552/ScoringFiles/PGS002552.txt.gz
PGS002557
(blood_LYMPHOCYTE_COUNT.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 5,729
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002557/ScoringFiles/PGS002557.txt.gz
PGS002558
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 10,888
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002558/ScoringFiles/PGS002558.txt.gz
PGS002559
(blood_MEAN_PLATELET_VOL.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean platelet volume mean platelet volume 19,124
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002559/ScoringFiles/PGS002559.txt.gz
PGS002560
(blood_MONOCYTE_COUNT.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 7,666
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002560/ScoringFiles/PGS002560.txt.gz
PGS002562
(blood_PLATELET_COUNT.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 12,742
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002562/ScoringFiles/PGS002562.txt.gz
PGS002564
(blood_RED_COUNT.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 7,590
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002564/ScoringFiles/PGS002564.txt.gz
PGS002565
(blood_RBC_DISTRIB_WIDTH.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell distribution width Red cell distribution width 7,740
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002565/ScoringFiles/PGS002565.txt.gz
PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 4,921
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002576/ScoringFiles/PGS002576.txt.gz
PGS002593
(blood_EOSINOPHIL_COUNT.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 4,677
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002593/ScoringFiles/PGS002593.txt.gz
PGS002599
(biochemistry_HbA1c.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 3,055
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002599/ScoringFiles/PGS002599.txt.gz
PGS002601
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
High light scatter reticulocyte count reticulocyte count 4,569
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002601/ScoringFiles/PGS002601.txt.gz
PGS002606
(blood_LYMPHOCYTE_COUNT.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 3,808
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002606/ScoringFiles/PGS002606.txt.gz
PGS002607
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 8,017
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002607/ScoringFiles/PGS002607.txt.gz
PGS002608
(blood_MEAN_PLATELET_VOL.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean platelet volume mean platelet volume 14,380
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002608/ScoringFiles/PGS002608.txt.gz
PGS002609
(blood_MONOCYTE_COUNT.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 5,367
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002609/ScoringFiles/PGS002609.txt.gz
PGS002611
(blood_PLATELET_COUNT.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 9,050
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002611/ScoringFiles/PGS002611.txt.gz
PGS002613
(blood_RED_COUNT.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 5,156
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002613/ScoringFiles/PGS002613.txt.gz
PGS002614
(blood_RBC_DISTRIB_WIDTH.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell distribution width Red cell distribution width 5,543
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002614/ScoringFiles/PGS002614.txt.gz
PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 3,184
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002625/ScoringFiles/PGS002625.txt.gz
PGS002642
(blood_EOSINOPHIL_COUNT.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 346,331
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002642/ScoringFiles/PGS002642.txt.gz
PGS002648
(biochemistry_HbA1c.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 394,312
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002648/ScoringFiles/PGS002648.txt.gz
PGS002650
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
High light scatter reticulocyte count reticulocyte count 406,785
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002650/ScoringFiles/PGS002650.txt.gz
PGS002655
(blood_LYMPHOCYTE_COUNT.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 472,203
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002655/ScoringFiles/PGS002655.txt.gz
PGS002656
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 351,633
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002656/ScoringFiles/PGS002656.txt.gz
PGS002657
(blood_MEAN_PLATELET_VOL.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean platelet volume mean platelet volume 354,280
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002657/ScoringFiles/PGS002657.txt.gz
PGS002658
(blood_MONOCYTE_COUNT.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 353,881
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002658/ScoringFiles/PGS002658.txt.gz
PGS002660
(blood_PLATELET_COUNT.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 396,074
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002660/ScoringFiles/PGS002660.txt.gz
PGS002662
(blood_RED_COUNT.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 473,515
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002662/ScoringFiles/PGS002662.txt.gz
PGS002663
(blood_RBC_DISTRIB_WIDTH.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell distribution width Red cell distribution width 340,172
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002663/ScoringFiles/PGS002663.txt.gz
PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 491,764
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002674/ScoringFiles/PGS002674.txt.gz
PGS002691
(blood_EOSINOPHIL_COUNT.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Eosinophil count eosinophil count 980,421
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002691/ScoringFiles/PGS002691.txt.gz
PGS002697
(biochemistry_HbA1c.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
HbA1c HbA1c measurement 989,344
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002697/ScoringFiles/PGS002697.txt.gz
PGS002699
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
High light scatter reticulocyte count reticulocyte count 983,680
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002699/ScoringFiles/PGS002699.txt.gz
PGS002704
(blood_LYMPHOCYTE_COUNT.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Lymphocyte count lymphocyte count 983,350
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002704/ScoringFiles/PGS002704.txt.gz
PGS002705
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 979,778
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002705/ScoringFiles/PGS002705.txt.gz
PGS002706
(blood_MEAN_PLATELET_VOL.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Mean platelet volume mean platelet volume 973,986
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002706/ScoringFiles/PGS002706.txt.gz
PGS002707
(blood_MONOCYTE_COUNT.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Monocyte count monocyte count 980,307
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002707/ScoringFiles/PGS002707.txt.gz
PGS002709
(blood_PLATELET_COUNT.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Platelet count platelet count 981,460
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002709/ScoringFiles/PGS002709.txt.gz
PGS002711
(blood_RED_COUNT.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell count erythrocyte count 982,902
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002711/ScoringFiles/PGS002711.txt.gz
PGS002712
(blood_RBC_DISTRIB_WIDTH.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Red blood cell distribution width Red cell distribution width 976,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002712/ScoringFiles/PGS002712.txt.gz
PGS002723
(blood_WHITE_COUNT.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte count 983,751
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002723/ScoringFiles/PGS002723.txt.gz
PGS003330
(PRS-F8)
PGP000395 |
Valenti L et al. JHEP Rep (2022)
Factor VIII levels factor VIII measurement 10
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003330/ScoringFiles/PGS003330.txt.gz
PGS003337
(CVGRS_HbA1c)
PGP000405 |
Kim YJ et al. Nat Commun (2022)
HbA1c HbA1c measurement 68
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003337/ScoringFiles/PGS003337.txt.gz
PGS003346
(ALLGRS_HbA1c)
PGP000405 |
Kim YJ et al. Nat Commun (2022)
HbA1c HbA1c measurement 74
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003346/ScoringFiles/PGS003346.txt.gz
PGS003425
(prscs_hemoglobin)
PGP000432 |
Toivonen J et al. Vox Sanguinis (2023)
Hemoglobin hemoglobin measurement 1,082,250
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003425/ScoringFiles/PGS003425.txt.gz
PGS003464
(LDPred2_EOS)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Eosinophil count eosinophil count 859,056
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003464/ScoringFiles/PGS003464.txt.gz
PGS003467
(LDPred2_HCT)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Hematocrit hematocrit 860,314
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003467/ScoringFiles/PGS003467.txt.gz
PGS003468
(LDPred2_HGB)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Hemoglobin hemoglobin measurement 860,341
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003468/ScoringFiles/PGS003468.txt.gz
PGS003471
(LDPred2_HbA1c)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
HbA1c HbA1c measurement 848,979
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003471/ScoringFiles/PGS003471.txt.gz
PGS003475
(LDPred2_LYM)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Lymphocyte count lymphocyte count 859,875
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003475/ScoringFiles/PGS003475.txt.gz
PGS003478
(LDPred2_RBC)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Red blood cell count erythrocyte count 860,281
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003478/ScoringFiles/PGS003478.txt.gz
PGS003483
(LDPred2_WBC)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
White blood cell count leukocyte count 860,306
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003483/ScoringFiles/PGS003483.txt.gz
PGS003502
(cont-decay-erythrocyte)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Red blood cell (erythrocyte) count erythrocyte count 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003502/ScoringFiles/PGS003502.txt.gz
PGS003503
(cont-decay-erythrocyte_width)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Red blood cell (erythrocyte) distribution width Red cell distribution width 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003503/ScoringFiles/PGS003503.txt.gz
PGS003511
(cont-decay-haematocrit_perc)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Haematocrit percentage hematocrit 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003511/ScoringFiles/PGS003511.txt.gz
PGS003512
(cont-decay-haemoglobin)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Haemoglobin concentration hemoglobin measurement 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003512/ScoringFiles/PGS003512.txt.gz
PGS003515
(cont-decay-immature_reticulocyte_frac)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Immature reticulocyte fraction reticulocyte measurement 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003515/ScoringFiles/PGS003515.txt.gz
PGS003530
(cont-decay-log_eosinophil_perc)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Eosinophil percentage eosinophil percentage of leukocytes 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003530/ScoringFiles/PGS003530.txt.gz
PGS003533
(cont-decay-log_HbA1c)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Glycated haemoglobin (HbA1c) HbA1c measurement 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003533/ScoringFiles/PGS003533.txt.gz
PGS003541
(cont-decay-log_leukocyte)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
White blood cell (leukocyte) count leukocyte count 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003541/ScoringFiles/PGS003541.txt.gz
PGS003544
(cont-decay-log_monocyte)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Monocyte count monocyte count 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003544/ScoringFiles/PGS003544.txt.gz
PGS003545
(cont-decay-log_neutrophil)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Neutrophil count neutrophil count 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003545/ScoringFiles/PGS003545.txt.gz
PGS003546
(cont-decay-log_platelet)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Platelet count platelet count 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003546/ScoringFiles/PGS003546.txt.gz
PGS003547
(cont-decay-log_platelet_crit)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Platelet crit platelet crit 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003547/ScoringFiles/PGS003547.txt.gz
PGS003548
(cont-decay-log_platelet_volume)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Mean platelet (thrombocyte) volume mean platelet volume 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003548/ScoringFiles/PGS003548.txt.gz
PGS003549
(cont-decay-log_platelet_width)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Platelet distribution width platelet component distribution width 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003549/ScoringFiles/PGS003549.txt.gz
PGS003551
(cont-decay-log_reticulocyte)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reticulocyte count reticulocyte count 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003551/ScoringFiles/PGS003551.txt.gz
PGS003557
(cont-decay-lymphocyte_perc)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Lymphocyte percentage lymphocyte percentage of leukocytes 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003557/ScoringFiles/PGS003557.txt.gz
PGS003560
(cont-decay-MCH)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Mean corpuscular hemoglobin mean corpuscular hemoglobin 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003560/ScoringFiles/PGS003560.txt.gz
PGS003561
(cont-decay-MCV)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Mean corpuscular volume mean corpuscular volume 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003561/ScoringFiles/PGS003561.txt.gz
PGS003562
(cont-decay-monocyte_perc)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Monocyte percentage monocyte percentage of leukocytes 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003562/ScoringFiles/PGS003562.txt.gz
PGS003566
(cont-decay-neutrophil_perc)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Neutrophil percentage neutrophil percentage of leukocytes 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003566/ScoringFiles/PGS003566.txt.gz
PGS003567
(cont-decay-reticulocyte_volume)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Mean reticulocyte volume mean reticulocyte volume 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003567/ScoringFiles/PGS003567.txt.gz
PGS003570
(cont-decay-sphered_cell_volume)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Mean sphered cell volume mean corpuscular volume 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003570/ScoringFiles/PGS003570.txt.gz
PGS003924
(INI30000)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
White blood cell (leukocyte) count leukocyte count 17,890
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003924/ScoringFiles/PGS003924.txt.gz
PGS003925
(INI30010)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Red blood cell (erythrocyte) count erythrocyte count 27,293
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003925/ScoringFiles/PGS003925.txt.gz
PGS003926
(INI30020)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Hemoglobin concentration hemoglobin measurement 21,078
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003926/ScoringFiles/PGS003926.txt.gz
PGS003927
(INI30030)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Hematocrit percentage hematocrit 20,106
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003927/ScoringFiles/PGS003927.txt.gz
PGS003928
(INI30040)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Mean corpuscular volume mean corpuscular volume 21,818
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003928/ScoringFiles/PGS003928.txt.gz
PGS003929
(INI30050)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Mean corpuscular hemoglobin mean corpuscular hemoglobin 17,127
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003929/ScoringFiles/PGS003929.txt.gz
PGS003930
(INI30060)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Mean corpuscular hemoglobin concentration mean corpuscular hemoglobin concentration 4,468
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003930/ScoringFiles/PGS003930.txt.gz
PGS003931
(INI30070)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Red blood cell (erythrocyte) distribution width Red cell distribution width 12,557
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003931/ScoringFiles/PGS003931.txt.gz
PGS003932
(INI30080)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Platelet count platelet count 32,944
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003932/ScoringFiles/PGS003932.txt.gz
PGS003933
(INI30090)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Platelet crit platelet crit 27,034
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003933/ScoringFiles/PGS003933.txt.gz
PGS003934
(INI30100)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Mean platelet (thrombocyte) volume mean platelet volume 31,032
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003934/ScoringFiles/PGS003934.txt.gz
PGS003935
(INI30110)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Platelet distribution width platelet component distribution width 21,899
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003935/ScoringFiles/PGS003935.txt.gz
PGS003936
(INI30120)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Lymphocyte count lymphocyte count 7,291
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003936/ScoringFiles/PGS003936.txt.gz
PGS003937
(INI30130)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Monocyte count monocyte count 13,415
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003937/ScoringFiles/PGS003937.txt.gz
PGS003938
(INI30140)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Neutrophil count neutrophil count 18,612
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003938/ScoringFiles/PGS003938.txt.gz
PGS003939
(INI30150)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Eosinophil count eosinophil count 16,859
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003939/ScoringFiles/PGS003939.txt.gz
PGS003940
(INI30160)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Basophil count basophil count 4,184
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003940/ScoringFiles/PGS003940.txt.gz
PGS003941
(INI30180)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Lymphocyte percentage lymphocyte percentage of leukocytes 20,804
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003941/ScoringFiles/PGS003941.txt.gz
PGS003942
(INI30190)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Monocyte percentage monocyte percentage of leukocytes 10,717
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003942/ScoringFiles/PGS003942.txt.gz
PGS003943
(INI30200)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Neutrophil percentage neutrophil percentage of leukocytes 16,931
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003943/ScoringFiles/PGS003943.txt.gz
PGS003944
(INI30210)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Eosinophil percentage eosinophil percentage of leukocytes 17,227
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003944/ScoringFiles/PGS003944.txt.gz
PGS003945
(INI30220)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Basophil percentage basophil percentage of leukocytes 3,472
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003945/ScoringFiles/PGS003945.txt.gz
PGS003946
(INI30240)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reticulocyte percentage reticulocyte measurement 7,884
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003946/ScoringFiles/PGS003946.txt.gz
PGS003947
(INI30250)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reticulocyte count reticulocyte count 9,558
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003947/ScoringFiles/PGS003947.txt.gz
PGS003948
(INI30260)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Mean reticulocyte volume mean reticulocyte volume 18,832
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003948/ScoringFiles/PGS003948.txt.gz
PGS003949
(INI30270)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Mean sphered cell volume mean corpuscular volume 21,558
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003949/ScoringFiles/PGS003949.txt.gz
PGS003950
(INI30280)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Immature reticulocyte fraction Immature Reticulocyte Fraction Measurement 16,307
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003950/ScoringFiles/PGS003950.txt.gz
PGS003951
(INI30290)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
High light scatter reticulocyte percentage reticulocyte measurement 11,641
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003951/ScoringFiles/PGS003951.txt.gz
PGS003952
(INI30300)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
High light scatter reticulocyte count reticulocyte count 19,565
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003952/ScoringFiles/PGS003952.txt.gz
PGS003987
(dbslmm.auto.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 1,009,642
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003987/ScoringFiles/PGS003987.txt.gz
PGS004003
(lassosum.auto.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 4,697
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004003/ScoringFiles/PGS004003.txt.gz
PGS004029
(ldpred2.auto.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 907,906
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004029/ScoringFiles/PGS004029.txt.gz
PGS004044
(ldpred2.CV.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 907,906
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004044/ScoringFiles/PGS004044.txt.gz
PGS004057
(megaprs.auto.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 514,367
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004057/ScoringFiles/PGS004057.txt.gz
PGS004073
(megaprs.CV.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 514,367
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004073/ScoringFiles/PGS004073.txt.gz
PGS004087
(prscs.auto.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 989,845
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004087/ScoringFiles/PGS004087.txt.gz
PGS004111
(pt_clump.auto.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 51
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004111/ScoringFiles/PGS004111.txt.gz
PGS004127
(pt_clump_nested.CV.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 246
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004127/ScoringFiles/PGS004127.txt.gz
PGS004141
(sbayesr.auto.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 683,029
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004141/ScoringFiles/PGS004141.txt.gz
PGS004157
(UKBB_EnsPGS.GCST007954.HbA1c)
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
HbA1c HbA1c measurement 1,009,664
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004157/ScoringFiles/PGS004157.txt.gz
PGS004337
(X30750.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Glycated haemoglobin (mmol/mol) HbA1c measurement 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004337/ScoringFiles/PGS004337.txt.gz
PGS004341
(X30860.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Total protein (g/L) total blood protein measurement 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004341/ScoringFiles/PGS004341.txt.gz
PGS004345
(X30000.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
White blood cell (leukocyte) count leukocyte count 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004345/ScoringFiles/PGS004345.txt.gz
PGS004346
(X30010.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Red blood cell (erythrocyte) count erythrocyte count 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004346/ScoringFiles/PGS004346.txt.gz
PGS004347
(X30020.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Haemoglobin concentration hemoglobin measurement 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004347/ScoringFiles/PGS004347.txt.gz
PGS004348
(X30030.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Haematocrit percentage hematocrit 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004348/ScoringFiles/PGS004348.txt.gz
PGS004349
(X30040.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Mean corpuscular volume mean corpuscular volume 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004349/ScoringFiles/PGS004349.txt.gz
PGS004350
(X30050.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Mean corpuscular haemoglobin mean corpuscular hemoglobin concentration 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004350/ScoringFiles/PGS004350.txt.gz
PGS004351
(X30070.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Red blood cell (erythrocyte) distribution width Red cell distribution width 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004351/ScoringFiles/PGS004351.txt.gz
PGS004352
(X30080.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Platelet count platelet count 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004352/ScoringFiles/PGS004352.txt.gz
PGS004353
(X30090.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Platelet crit platelet crit 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004353/ScoringFiles/PGS004353.txt.gz
PGS004354
(X30100.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Mean platelet (thrombocyte) volume mean platelet volume 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004354/ScoringFiles/PGS004354.txt.gz
PGS004355
(X30110.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Platelet distribution width platelet component distribution width 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004355/ScoringFiles/PGS004355.txt.gz
PGS004356
(X30120.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Lymphocyte count lymphocyte count 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004356/ScoringFiles/PGS004356.txt.gz
PGS004357
(X30130.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Monocyte count monocyte count 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004357/ScoringFiles/PGS004357.txt.gz
PGS004358
(X30140.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Neutrophill count neutrophil count 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004358/ScoringFiles/PGS004358.txt.gz
PGS004359
(X30180.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Lymphocyte percentage lymphocyte percentage of leukocytes 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004359/ScoringFiles/PGS004359.txt.gz
PGS004360
(X30190.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Monocyte percentage monocyte percentage of leukocytes 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004360/ScoringFiles/PGS004360.txt.gz
PGS004361
(X30200.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Neutrophill percentage neutrophil percentage of leukocytes 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004361/ScoringFiles/PGS004361.txt.gz
PGS004362
(X30210.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Eosinophill percentage eosinophil percentage of leukocytes 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004362/ScoringFiles/PGS004362.txt.gz
PGS004363
(X30240.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Reticulocyte percentage reticulocyte measurement 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004363/ScoringFiles/PGS004363.txt.gz
PGS004364
(X30250.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Reticulocyte count reticulocyte count 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004364/ScoringFiles/PGS004364.txt.gz
PGS004365
(X30260.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Mean reticulocyte volume mean reticulocyte volume 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004365/ScoringFiles/PGS004365.txt.gz
PGS004366
(X30270.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Mean sphered cell volume mean corpuscular volume 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004366/ScoringFiles/PGS004366.txt.gz
PGS004367
(X30280.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Immature reticulocyte fraction reticulocyte measurement 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004367/ScoringFiles/PGS004367.txt.gz
PGS004368
(X30290.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
High light scatter reticulocyte percentage reticulocyte measurement 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004368/ScoringFiles/PGS004368.txt.gz
PGS004369
(X30300.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
High light scatter reticulocyte count reticulocyte count 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004369/ScoringFiles/PGS004369.txt.gz
PGS004582
(PRSice_T1)
PGP000563 |
Yang Z et al. Blood (2023)
Platelet count during the first trimester platelet count 407,667
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004582/ScoringFiles/PGS004582.txt.gz
PGS004583
(PRSice_T2)
PGP000563 |
Yang Z et al. Blood (2023)
Platelet count during the second trimester platelet count 104,759
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004583/ScoringFiles/PGS004583.txt.gz
PGS004584
(PRSice_T3)
PGP000563 |
Yang Z et al. Blood (2023)
Platelet count during the third trimester platelet count 5,597
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004584/ScoringFiles/PGS004584.txt.gz
PGS004701
(a1c_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
HbA1c HbA1c measurement 1,107,927
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004701/ScoringFiles/PGS004701.txt.gz
PGS004702
(a1c_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
HbA1c HbA1c measurement 6,652,699
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004702/ScoringFiles/PGS004702.txt.gz
PGS004703
(a1c_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
HbA1c HbA1c measurement 3,872,159
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004703/ScoringFiles/PGS004703.txt.gz
PGS004704
(a1c_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
HbA1c HbA1c measurement 6,652,699
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004704/ScoringFiles/PGS004704.txt.gz
PGS004727
(Basophils_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Basophil count basophil count 6,503
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004727/ScoringFiles/PGS004727.txt.gz
PGS004728
(Basophils_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Basophil count basophil count 6,132,012
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004728/ScoringFiles/PGS004728.txt.gz
PGS004729
(Basophils_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Basophil count basophil count 1,538,675
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004729/ScoringFiles/PGS004729.txt.gz
PGS004730
(Basophils_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Basophil count basophil count 6,132,012
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004730/ScoringFiles/PGS004730.txt.gz
PGS004761
(Eosinophils_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Eosinophil count eosinophil count 1,086,541
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004761/ScoringFiles/PGS004761.txt.gz
PGS004762
(Eosinophils_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Eosinophil count eosinophil count 4,143,233
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004762/ScoringFiles/PGS004762.txt.gz
PGS004763
(Eosinophils_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Eosinophil count eosinophil count 3,749,971
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004763/ScoringFiles/PGS004763.txt.gz
PGS004764
(Eosinophils_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Eosinophil count eosinophil count 1,698,846
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004764/ScoringFiles/PGS004764.txt.gz
PGS004769
(Hb_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Hemoglobin hemoglobin measurement 584,676
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004769/ScoringFiles/PGS004769.txt.gz
PGS004770
(Hb_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Hemoglobin hemoglobin measurement 3,913,042
-
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004770/ScoringFiles/PGS004770.txt.gz
PGS004771
(Hct_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Hematocrit hematocrit 594,293
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004771/ScoringFiles/PGS004771.txt.gz
PGS004772
(hct_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Hematocrit hematocrit 1,259,662
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004772/ScoringFiles/PGS004772.txt.gz
PGS004773
(Hct_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Hematocrit hematocrit 1,176,938
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004773/ScoringFiles/PGS004773.txt.gz
PGS004774
(hct_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Hematocrit hematocrit 1,259,662
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004774/ScoringFiles/PGS004774.txt.gz
PGS004801
(Monocytes_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Monocyte count monocyte count 1,099,478
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004801/ScoringFiles/PGS004801.txt.gz
PGS004802
(Monocytes_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Monocyte count monocyte count 2,743,298
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004802/ScoringFiles/PGS004802.txt.gz
PGS004803
(Monocytes_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Monocyte count monocyte count 3,020,361
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004803/ScoringFiles/PGS004803.txt.gz
PGS004804
(Monocytes_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Monocyte count monocyte count 2,743,298
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004804/ScoringFiles/PGS004804.txt.gz
PGS004805
(Neutrophils_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Neutrophil count neutrophil count 595,488
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004805/ScoringFiles/PGS004805.txt.gz
PGS004806
(Neutrophils_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Neutrophil count neutrophil count 4,190,918
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004806/ScoringFiles/PGS004806.txt.gz
PGS004807
(Neutrophils_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Neutrophil count neutrophil count 3,498,605
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004807/ScoringFiles/PGS004807.txt.gz
PGS004808
(Neutrophils_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Neutrophil count neutrophil count 1,877,161
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004808/ScoringFiles/PGS004808.txt.gz
PGS004811
(Platelets_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Platelet count platelet count 1,147,733
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004811/ScoringFiles/PGS004811.txt.gz
PGS004812
(Platelets_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Platelet count platelet count 6,146,883
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004812/ScoringFiles/PGS004812.txt.gz
PGS004813
(Platelets_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Platelet count platelet count 1,793,041
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004813/ScoringFiles/PGS004813.txt.gz
PGS004814
(Platelets_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Platelet count platelet count 6,146,883
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004814/ScoringFiles/PGS004814.txt.gz
PGS004821
(RBC_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Red blood cell count erythrocyte count 1,160,061
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004821/ScoringFiles/PGS004821.txt.gz
PGS004822
(RBC_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Red blood cell count erythrocyte count 1,874,761
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004822/ScoringFiles/PGS004822.txt.gz
PGS004823
(RBC_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Red blood cell count erythrocyte count 4,047,636
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004823/ScoringFiles/PGS004823.txt.gz
PGS004824
(RBC_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Red blood cell count erythrocyte count 1,542,933
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004824/ScoringFiles/PGS004824.txt.gz
PGS004825
(RDW_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Red cell distribution width Red cell distribution width 1,082,665
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004825/ScoringFiles/PGS004825.txt.gz
PGS004826
(RDW_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Red cell distribution width Red cell distribution width 5,175,389
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004826/ScoringFiles/PGS004826.txt.gz
PGS004827
(RDW_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Red cell distribution width Red cell distribution width 4,698,860
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004827/ScoringFiles/PGS004827.txt.gz
PGS004828
(RDW_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Red cell distribution width Red cell distribution width 5,175,389
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004828/ScoringFiles/PGS004828.txt.gz
PGS004849
(Total_protein_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Total protein measurement total blood protein measurement 2,167,123
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004849/ScoringFiles/PGS004849.txt.gz
PGS004850
(Total_protein_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Total protein measurement total blood protein measurement 937,777
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004850/ScoringFiles/PGS004850.txt.gz
PGS004851
(TotalProtein_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Total protein measurement total blood protein measurement 593,738
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004851/ScoringFiles/PGS004851.txt.gz
PGS004852
(TotalProtein_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Total protein measurement total blood protein measurement 724,061
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004852/ScoringFiles/PGS004852.txt.gz
PGS004855
(WBC_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
White blood cell count leukocyte count 1,165,158
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004855/ScoringFiles/PGS004855.txt.gz
PGS004856
(WBC_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
White blood cell count leukocyte count 6,594,323
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004856/ScoringFiles/PGS004856.txt.gz
PGS004857
(WBC_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
White blood cell count leukocyte count 4,141,649
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004857/ScoringFiles/PGS004857.txt.gz
PGS004858
(WBC_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
White blood cell count leukocyte count 6,594,323
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004858/ScoringFiles/PGS004858.txt.gz
PGS004956
(Hemoglobin_Mean_INT_ldpred_AFRss_afrld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,286,612
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004956/ScoringFiles/PGS004956.txt.gz
PGS004957
(Hemoglobin_Mean_INT_ldpred_EURss_eurld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,286,612
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004957/ScoringFiles/PGS004957.txt.gz
PGS004958
(Hemoglobin_Mean_INT_ldpred_HISss_amrld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,286,612
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004958/ScoringFiles/PGS004958.txt.gz
PGS004959
(Hemoglobin_Mean_INT_ldpred_METAss_afrld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,286,612
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004959/ScoringFiles/PGS004959.txt.gz
PGS004960
(Hemoglobin_Mean_INT_ldpred_METAss_amrld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,286,612
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004960/ScoringFiles/PGS004960.txt.gz
PGS004961
(Hemoglobin_Mean_INT_ldpred_METAss_eurld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,286,612
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004961/ScoringFiles/PGS004961.txt.gz
PGS004962
(Hemoglobin_Mean_INT_prscs_AFRss_afrld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,273,252
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004962/ScoringFiles/PGS004962.txt.gz
PGS004963
(Hemoglobin_Mean_INT_prscs_EURss_eurld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,273,252
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004963/ScoringFiles/PGS004963.txt.gz
PGS004964
(Hemoglobin_Mean_INT_prscs_HISss_amrld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,273,252
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004964/ScoringFiles/PGS004964.txt.gz
PGS004965
(Hemoglobin_Mean_INT_prscs_METAss_afrld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,273,252
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004965/ScoringFiles/PGS004965.txt.gz
PGS004966
(Hemoglobin_Mean_INT_prscs_METAss_amrld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,273,252
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004966/ScoringFiles/PGS004966.txt.gz
PGS004967
(Hemoglobin_Mean_INT_prscs_METAss_eurld)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,273,252
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004967/ScoringFiles/PGS004967.txt.gz
PGS004968
(Hemoglobin_Mean_INT_prscsx_METAweight)
PGP000679 |
Gunn S et al. HGG Adv (2024)
Hemoglobin hemoglobin measurement 1,277,825
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004968/ScoringFiles/PGS004968.txt.gz

Performance Metrics

Disclaimer: The performance metrics are displayed as reported by the source studies. It is important to note that metrics are not necessarily comparable with each other. For example, metrics depend on the sample characteristics (described by the PGS Catalog Sample Set [PSS] ID), phenotyping, and statistical modelling. Please refer to the source publication for additional guidance on performance.

PGS Performance
Metric ID (PPM)
Evaluated Score PGS Sample Set ID
(PSS)
Performance Source Trait PGS Effect Sizes
(per SD change)
Classification Metrics Other Metrics Covariates Included in the Model PGS Performance:
Other Relevant Information
PPM000208 PGS000088
(baso)
PSS000153|
European Ancestry|
80,944 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Basophil count Pearson correlation coefficent (r): 0.20539 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000209 PGS000088
(baso)
PSS000127|
European Ancestry|
39,986 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Basophil count Pearson correlation coefficent (r): 0.20489 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000210 PGS000089
(baso_p)
PSS000154|
European Ancestry|
80,906 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Basophil percentage of white cells Pearson correlation coefficent (r): 0.18838 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000211 PGS000089
(baso_p)
PSS000128|
European Ancestry|
40,133 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Basophil percentage of white cells Pearson correlation coefficent (r): 0.17123 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000212 PGS000090
(eo)
PSS000155|
European Ancestry|
81,294 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Eosinophil count Pearson correlation coefficent (r): 0.40991 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000213 PGS000090
(eo)
PSS000129|
European Ancestry|
40,276 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Eosinophil count Pearson correlation coefficent (r): 0.39315 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000214 PGS000091
(eo_p)
PSS000156|
European Ancestry|
81,283 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Eosinophil percentage of white cells Pearson correlation coefficent (r): 0.39099 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000215 PGS000091
(eo_p)
PSS000130|
European Ancestry|
40,326 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Eosinophil percentage of white cells Pearson correlation coefficent (r): 0.37643 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000216 PGS000092
(hct)
PSS000157|
European Ancestry|
81,622 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Hematocrit Pearson correlation coefficent (r): 0.36874 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000217 PGS000092
(hct)
PSS000131|
European Ancestry|
40,340 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Hematocrit Pearson correlation coefficent (r): 0.29832 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000218 PGS000093
(hgb)
PSS000158|
European Ancestry|
81,548 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Hemoglobin concentration Pearson correlation coefficent (r): 0.37936 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000219 PGS000093
(hgb)
PSS000132|
European Ancestry|
40,329 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Hemoglobin concentration Pearson correlation coefficent (r): 0.30254 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000220 PGS000094
(hlr)
PSS000159|
European Ancestry|
80,067 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: High light scatter reticulocyte count Pearson correlation coefficent (r): 0.4559 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000221 PGS000094
(hlr)
PSS000133|
European Ancestry|
40,244 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: High light scatter reticulocyte count Pearson correlation coefficent (r): 0.40097 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000222 PGS000095
(hlr_p)
PSS000160|
European Ancestry|
80,088 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: High light scatter reticulocyte percentage of red cells Pearson correlation coefficent (r): 0.46291 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000223 PGS000095
(hlr_p)
PSS000134|
European Ancestry|
40,225 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: High light scatter reticulocyte percentage of red cells Pearson correlation coefficent (r): 0.40544 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000224 PGS000096
(irf)
PSS000161|
European Ancestry|
79,282 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Immature fraction of reticulocytes Pearson correlation coefficent (r): 0.35972 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000225 PGS000096
(irf)
PSS000135|
European Ancestry|
40,227 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Immature fraction of reticulocytes Pearson correlation coefficent (r): 0.36441 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000226 PGS000097
(lymph)
PSS000162|
European Ancestry|
81,455 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Lymphocyte count Pearson correlation coefficent (r): 0.40707 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000227 PGS000097
(lymph)
PSS000136|
European Ancestry|
39,191 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Lymphocyte count Pearson correlation coefficent (r): 0.4055 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000228 PGS000098
(lymph_p)
PSS000163|
European Ancestry|
81,464 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Lymphocyte percentage of white cells Pearson correlation coefficent (r): 0.33396 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000229 PGS000098
(lymph_p)
PSS000137|
European Ancestry|
39,178 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Lymphocyte percentage of white cells Pearson correlation coefficent (r): 0.3313 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000230 PGS000099
(mch)
PSS000164|
European Ancestry|
81,303 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Mean corpuscular hemoglobin Pearson correlation coefficent (r): 0.54504 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000231 PGS000099
(mch)
PSS000138|
European Ancestry|
40,108 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Mean corpuscular hemoglobin Pearson correlation coefficent (r): 0.49689 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000232 PGS000100
(mchc)
PSS000165|
European Ancestry|
81,570 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Mean corpuscular hemoglobin concentration Pearson correlation coefficent (r): 0.2805 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000233 PGS000100
(mchc)
PSS000139|
European Ancestry|
40,265 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Mean corpuscular hemoglobin concentration Pearson correlation coefficent (r): 0.29105 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000234 PGS000101
(mcv)
PSS000166|
European Ancestry|
81,431 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Mean corpuscular volume Pearson correlation coefficent (r): 0.5624 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000235 PGS000101
(mcv)
PSS000140|
European Ancestry|
40,080 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Mean corpuscular volume Pearson correlation coefficent (r): 0.47754 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000236 PGS000102
(mono)
PSS000167|
European Ancestry|
80,799 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Monocyte count Pearson correlation coefficent (r): 0.49849 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000237 PGS000102
(mono)
PSS000141|
European Ancestry|
39,177 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Monocyte count Pearson correlation coefficent (r): 0.47594 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000238 PGS000103
(mono_p)
PSS000168|
European Ancestry|
80,627 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Monocyte percentage of white cells Pearson correlation coefficent (r): 0.46271 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000239 PGS000103
(mono_p)
PSS000142|
European Ancestry|
39,189 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Monocyte percentage of white cells Pearson correlation coefficent (r): 0.45879 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000240 PGS000104
(mpv)
PSS000169|
European Ancestry|
78,320 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Mean platelet volume Pearson correlation coefficent (r): 0.61214 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000241 PGS000104
(mpv)
PSS000143|
European Ancestry|
37,224 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Mean platelet volume Pearson correlation coefficent (r): 0.60875 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000242 PGS000105
(neut)
PSS000170|
European Ancestry|
81,358 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Neutrophil count Pearson correlation coefficent (r): 0.36386 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000243 PGS000105
(neut)
PSS000144|
European Ancestry|
39,138 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Neutrophil count Pearson correlation coefficent (r): 0.35194 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000244 PGS000106
(neut_p)
PSS000171|
European Ancestry|
81,423 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Neutrophil percentage of white cells Pearson correlation coefficent (r): 0.32169 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000245 PGS000106
(neut_p)
PSS000145|
European Ancestry|
39,190 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Neutrophil percentage of white cells Pearson correlation coefficent (r): 0.31935 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000246 PGS000107
(pct)
PSS000172|
European Ancestry|
78,161 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Plateletcrit Pearson correlation coefficent (r): 0.49284 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000247 PGS000107
(pct)
PSS000146|
European Ancestry|
37,306 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Plateletcrit Pearson correlation coefficent (r): 0.48865 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000248 PGS000108
(pdw)
PSS000173|
European Ancestry|
78,290 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Platelet distribution width Pearson correlation coefficent (r): 0.49624 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000249 PGS000108
(pdw)
PSS000147|
European Ancestry|
37,262 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Platelet distribution width Pearson correlation coefficent (r): 0.28359 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000250 PGS000109
(plt)
PSS000174|
European Ancestry|
78,246 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Platelet count Pearson correlation coefficent (r): 0.52039 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000251 PGS000109
(plt)
PSS000148|
European Ancestry|
38,939 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Platelet count Pearson correlation coefficent (r): 0.53746 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000252 PGS000110
(rbc)
PSS000175|
European Ancestry|
81,614 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Red blood cell count Pearson correlation coefficent (r): 0.45067 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000253 PGS000110
(rbc)
PSS000149|
European Ancestry|
40,262 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Red blood cell count Pearson correlation coefficent (r): 0.42574 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000254 PGS000111
(ret)
PSS000176|
European Ancestry|
79,344 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Reticulocyte count Pearson correlation coefficent (r): 0.45071 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000255 PGS000111
(ret)
PSS000150|
European Ancestry|
40,253 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Reticulocyte count Pearson correlation coefficent (r): 0.44742 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000256 PGS000112
(ret_p)
PSS000177|
European Ancestry|
79,362 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Reticulocyte fraction of red cells Pearson correlation coefficent (r): 0.45239 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000257 PGS000112
(ret_p)
PSS000151|
European Ancestry|
40,286 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: Reticulocyte fraction of red cells Pearson correlation coefficent (r): 0.45318 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000258 PGS000113
(wbc)
PSS000178|
European Ancestry|
81,606 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: White blood cell count Pearson correlation coefficent (r): 0.39876 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000259 PGS000113
(wbc)
PSS000152|
European Ancestry|
40,466 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: White blood cell count Pearson correlation coefficent (r): 0.38866 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000407 PGS000127
(GS-E-EUR)
PSS000236|
European Ancestry|
37,357 individuals
PGP000064 |
Wheeler E et al. PLoS Med (2017)
Reported Trait: Incident type 2 diabetes OR: 1.0 [0.99, 1.01] age, sex
PPM000408 PGS000128
(GS-E-AFR)
PSS000234|
African Ancestry|
1,906 individuals
PGP000064 |
Wheeler E et al. PLoS Med (2017)
Reported Trait: Incident type 2 diabetes OR: 0.98 [0.96, 1.0] age, sex
PPM000409 PGS000129
(GS-E-EAS)
PSS000235|
East Asian Ancestry|
5,073 individuals
PGP000064 |
Wheeler E et al. PLoS Med (2017)
Reported Trait: Incident type 2 diabetes OR: 1.02 [0.99, 1.05] age, sex
PPM000410 PGS000130
(GS-G-EUR)
PSS000236|
European Ancestry|
37,357 individuals
PGP000064 |
Wheeler E et al. PLoS Med (2017)
Reported Trait: Incident type 2 diabetes OR: 1.05 [1.04, 1.06] age, sex
PPM000411 PGS000131
(GS-G-AFR)
PSS000234|
African Ancestry|
1,906 individuals
PGP000064 |
Wheeler E et al. PLoS Med (2017)
Reported Trait: Incident type 2 diabetes OR: 1.0 [0.95, 1.05] age, sex
PPM000412 PGS000132
(GS-G-EAS)
PSS000235|
East Asian Ancestry|
5,073 individuals
PGP000064 |
Wheeler E et al. PLoS Med (2017)
Reported Trait: Incident type 2 diabetes OR: 1.05 [1.02, 1.07] age, sex
PPM000546 PGS000163
(baso)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Basophil count : 0.0089 sex, age, 10 genetic PCs
PPM000519 PGS000163
(baso)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Basophil count : 0.02691 sex, age, 10 genetic PCs
PPM000520 PGS000164
(baso_p)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Basophil percentage of white cells : 0.02544 sex, age, 10 genetic PCs
PPM000547 PGS000165
(eo)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Eosinophil count : 0.06931 sex, age, 10 genetic PCs
PPM000521 PGS000165
(eo)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Eosinophil count : 0.11155 sex, age, 10 genetic PCs
PPM000522 PGS000166
(eo_p)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Eosinophil percentage of white cells : 0.0979 sex, age, 10 genetic PCs
PPM001777 PGS000167
(hct)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: Hematocrit Pearson correlation coefficent (r): 0.15
PPM000548 PGS000167
(hct)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Hematocrit : 0.05147 sex, age, 10 genetic PCs
PPM000523 PGS000167
(hct)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Hematocrit : 0.04931 sex, age, 10 genetic PCs
PPM001778 PGS000168
(hgb)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: Hemoglobin Pearson correlation coefficent (r): 0.14
PPM000549 PGS000168
(hgb)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Hemoglobin concentration : 0.0646 sex, age, 10 genetic PCs
PPM000524 PGS000168
(hgb)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Hemoglobin concentration : 0.05697 sex, age, 10 genetic PCs
PPM000525 PGS000169
(hlr)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: High light scatter reticulocyte count : 0.11896 sex, age, 10 genetic PCs
PPM000526 PGS000170
(hlr_p)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: High light scatter reticulocyte percentage of red cells : 0.12799 sex, age, 10 genetic PCs
PPM000527 PGS000171
(irf)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Immature fraction of reticulocytes : 0.09164 sex, age, 10 genetic PCs
PPM000550 PGS000172
(lymph)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Lymphocyte count : 0.03217 sex, age, 10 genetic PCs
PPM000528 PGS000172
(lymph)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Lymphocyte count : 0.10555 sex, age, 10 genetic PCs
PPM000529 PGS000173
(lymph_p)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Lymphocyte percentage of white cells : 0.06965 sex, age, 10 genetic PCs
PPM000552 PGS000174
(mch)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Mean corpuscular hemoglobin : 0.17483 sex, age, 10 genetic PCs
PPM000530 PGS000174
(mch)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Mean corpuscular hemoglobin : 0.18282 sex, age, 10 genetic PCs
PPM001773 PGS000174
(mch)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: Mean corpuscular hemoglobin Pearson correlation coefficent (r): 0.22
PPM000551 PGS000175
(mchc)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Mean corpuscular hemoglobin concentration : 0.04796 sex, age, 10 genetic PCs
PPM000531 PGS000175
(mchc)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Mean corpuscular hemoglobin concentration : 0.05159 sex, age, 10 genetic PCs
PPM001772 PGS000175
(mchc)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: Mean cell hemoglobin concentration Pearson correlation coefficent (r): 0.12
PPM000553 PGS000176
(mcv)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Mean corpuscular volume : 0.1665 sex, age, 10 genetic PCs
PPM000532 PGS000176
(mcv)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Mean corpuscular volume : 0.15931 sex, age, 10 genetic PCs
PPM001774 PGS000176
(mcv)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: Mean corpuscular volume Pearson correlation coefficent (r): 0.23
PPM000554 PGS000177
(mono)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Monocyte count : 0.09474 sex, age, 10 genetic PCs
PPM000533 PGS000177
(mono)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Monocyte count : 0.15859 sex, age, 10 genetic PCs
PPM000534 PGS000178
(mono_p)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Monocyte percentage of white cells : 0.14461 sex, age, 10 genetic PCs
PPM000555 PGS000179
(mpv)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Mean platelet volume : 0.19379 sex, age, 10 genetic PCs
PPM000535 PGS000179
(mpv)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Mean platelet volume : 0.27306 sex, age, 10 genetic PCs
PPM001776 PGS000179
(mpv)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: Mean platelet volume Pearson correlation coefficent (r): 0.51
PPM000556 PGS000182
(neut)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Neutrophil count : 0.06859 sex, age, 10 genetic PCs
PPM000536 PGS000182
(neut)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Neutrophil count : 0.08009 sex, age, 10 genetic PCs
PPM000537 PGS000183
(neut_p)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Neutrophil percentage of white cells : 0.06432 sex, age, 10 genetic PCs
PPM000538 PGS000184
(pct)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Plateletcrit : 0.1555 sex, age, 10 genetic PCs
PPM000539 PGS000185
(pdw)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Platelet distribution width : 0.05996 sex, age, 10 genetic PCs
PPM001775 PGS000186
(plt)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: Platelet count Pearson correlation coefficent (r): 0.35
PPM000557 PGS000186
(plt)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Platelet count : 0.16049 sex, age, 10 genetic PCs
PPM000540 PGS000186
(plt)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Platelet count : 0.19195 sex, age, 10 genetic PCs
PPM000558 PGS000187
(rbc)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Red blood cell count : 0.06798 sex, age, 10 genetic PCs
PPM000541 PGS000187
(rbc)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Red blood cell count : 0.11765 sex, age, 10 genetic PCs
PPM001771 PGS000187
(rbc)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: Red blood cell count Pearson correlation coefficent (r): 0.22
PPM000559 PGS000188
(rdw)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Red cell distribution width : 0.07409 sex, age, 10 genetic PCs
PPM000542 PGS000188
(rdw)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Red cell distribution width : 0.09519 sex, age, 10 genetic PCs
PPM000543 PGS000189
(ret)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Reticulocyte count : 0.14142 sex, age, 10 genetic PCs
PPM000544 PGS000190
(ret_p)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: Reticulocyte fraction of red cells : 0.15022 sex, age, 10 genetic PCs
PPM000560 PGS000191
(wbc)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: White blood cell count : 0.06336 sex, age, 10 genetic PCs
PPM000545 PGS000191
(wbc)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: White blood cell count : 0.08672 sex, age, 10 genetic PCs
PPM001770 PGS000191
(wbc)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: White blood cell count Pearson correlation coefficent (r): 0.19
PPM000774 PGS000304
(GRS43_HbA1c)
PSS000376|
European Ancestry|
1,354 individuals
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
Reported Trait: HbA1c (%) : 0.0283 Sex, age, age^2
PPM000803 PGS000304
(GRS43_HbA1c)
PSS000371|
European Ancestry|
288 individuals
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
Reported Trait: HbA1c (%) : 0.0277 Sex, age, age^2
PPM001413 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS000704|
African Ancestry|
4,847 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: HbA1c [mmol/mol] : 0.07974
Spearman's ρ: 0.132
Age, sex, PCs(1-40)
PPM001448 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS000705|
East Asian Ancestry|
1,032 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: HbA1c [mmol/mol] : 0.16979
Spearman's ρ: 0.285
Age, sex, PCs(1-40)
PPM001483 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS000706|
European Ancestry|
22,518 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: HbA1c [mmol/mol] : 0.17335
Spearman's ρ: 0.367
Age, sex, PCs(1-40)
PPM001518 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS000707|
South Asian Ancestry|
6,895 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: HbA1c [mmol/mol] : 0.12743
Spearman's ρ: 0.268
Age, sex, PCs(1-40)
PPM001553 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS000708|
European Ancestry|
60,920 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: HbA1c [mmol/mol] : 0.16381
Spearman's ρ: 0.375
Age, sex, PCs(1-40)
PPM001585 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS000817|
European Ancestry|
1,995 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: HbA1c [mmol/mol] Spearman's ρ: 0.217 Age, sex
PPM007350 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS007156|
African Ancestry|
5,219 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Glycated haemoglobin (HbA1c) : 0.05396 [0.04328, 0.06464]
Incremental R2 (full-covars): 0.00054
PGS R2 (no covariates): 0.00619 [0.00239, 0.00998]
age, sex, UKB array type, Genotype PCs
PPM007351 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS007157|
East Asian Ancestry|
1,622 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Glycated haemoglobin (HbA1c) : 0.1264 [0.09696, 0.15583]
Incremental R2 (full-covars): 0.00207
PGS R2 (no covariates): 0.04145 [0.02295, 0.05994]
age, sex, UKB array type, Genotype PCs
PPM007352 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS007158|
European Ancestry|
23,762 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Glycated haemoglobin (HbA1c) : 0.06205 [0.05625, 0.06785]
Incremental R2 (full-covars): 0.00348
PGS R2 (no covariates): 0.06567 [0.05972, 0.07162]
age, sex, UKB array type, Genotype PCs
PPM007353 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS007159|
South Asian Ancestry|
7,345 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Glycated haemoglobin (HbA1c) : 0.05344 [0.04375, 0.06313]
Incremental R2 (full-covars): 0.00135
PGS R2 (no covariates): 0.03576 [0.02769, 0.04383]
age, sex, UKB array type, Genotype PCs
PPM007354 PGS000685
(snpnet.Glycated_haemoglobin_HbA1c)
PSS007160|
European Ancestry|
64,432 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Glycated haemoglobin (HbA1c) : 0.05264 [0.04936, 0.05592]
Incremental R2 (full-covars): 0.00369
PGS R2 (no covariates): 0.06933 [0.06563, 0.07303]
age, sex, UKB array type, Genotype PCs
PPM001426 PGS000698
(snpnet.Total_protein)
PSS000767|
African Ancestry|
5,573 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Total protein [g/L] : 0.04363
Spearman's ρ: 0.144
Age, sex, PCs(1-40)
PPM001531 PGS000698
(snpnet.Total_protein)
PSS000770|
South Asian Ancestry|
6,687 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Total protein [g/L] : 0.10522
Spearman's ρ: 0.258
Age, sex, PCs(1-40)
PPM001566 PGS000698
(snpnet.Total_protein)
PSS000771|
European Ancestry|
58,196 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Total protein [g/L] : 0.11218
Spearman's ρ: 0.284
Age, sex, PCs(1-40)
PPM001461 PGS000698
(snpnet.Total_protein)
PSS000768|
East Asian Ancestry|
984 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Total protein [g/L] : 0.09275
Spearman's ρ: 0.247
Age, sex, PCs(1-40)
PPM001496 PGS000698
(snpnet.Total_protein)
PSS000769|
European Ancestry|
21,516 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Total protein [g/L] : 0.11654
Spearman's ρ: 0.282
Age, sex, PCs(1-40)
PPM007415 PGS000698
(snpnet.Total_protein)
PSS007201|
African Ancestry|
5,659 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Total protein : 0.01038 [0.00548, 0.01528]
Incremental R2 (full-covars): 0.00061
PGS R2 (no covariates): 0.02117 [0.01425, 0.0281]
age, sex, UKB array type, Genotype PCs
PPM007416 PGS000698
(snpnet.Total_protein)
PSS007202|
East Asian Ancestry|
1,474 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Total protein : 0.04549 [0.0262, 0.06478]
Incremental R2 (full-covars): 0.00107
PGS R2 (no covariates): 0.05677 [0.03548, 0.07807]
age, sex, UKB array type, Genotype PCs
PPM007417 PGS000698
(snpnet.Total_protein)
PSS007203|
European Ancestry|
21,730 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Total protein : 0.01493 [0.01194, 0.01792]
Incremental R2 (full-covars): 0.00167
PGS R2 (no covariates): 0.07937 [0.07293, 0.08581]
age, sex, UKB array type, Genotype PCs
PPM007418 PGS000698
(snpnet.Total_protein)
PSS007204|
South Asian Ancestry|
6,788 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Total protein : 0.01363 [0.00853, 0.01873]
Incremental R2 (full-covars): 0.00134
PGS R2 (no covariates): 0.0679 [0.05715, 0.07866]
age, sex, UKB array type, Genotype PCs
PPM007419 PGS000698
(snpnet.Total_protein)
PSS007205|
European Ancestry|
59,024 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Total protein : 0.00668 [0.00545, 0.0079]
Incremental R2 (full-covars): 0.00176
PGS R2 (no covariates): 0.08081 [0.07687, 0.08476]
age, sex, UKB array type, Genotype PCs
PPM007703 PGS000987
(GBE_INI30260)
PSS007026|
African Ancestry|
5,973 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean reticulocyte volume : 0.03718 [0.02815, 0.0462]
Incremental R2 (full-covars): 0.02777
PGS R2 (no covariates): 0.02867 [0.02068, 0.03667]
age, sex, UKB array type, Genotype PCs
PPM007704 PGS000987
(GBE_INI30260)
PSS007027|
East Asian Ancestry|
1,623 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean reticulocyte volume : 0.08812 [0.06247, 0.11377]
Incremental R2 (full-covars): 0.07173
PGS R2 (no covariates): 0.07447 [0.05053, 0.0984]
age, sex, UKB array type, Genotype PCs
PPM007705 PGS000987
(GBE_INI30260)
PSS007028|
European Ancestry|
23,687 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean reticulocyte volume : 0.1616 [0.15323, 0.16997]
Incremental R2 (full-covars): 0.14435
PGS R2 (no covariates): 0.1455 [0.1374, 0.15359]
age, sex, UKB array type, Genotype PCs
PPM007706 PGS000987
(GBE_INI30260)
PSS007029|
South Asian Ancestry|
7,323 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean reticulocyte volume : 0.13294 [0.11894, 0.14694]
Incremental R2 (full-covars): 0.09343
PGS R2 (no covariates): 0.09786 [0.08537, 0.11036]
age, sex, UKB array type, Genotype PCs
PPM007707 PGS000987
(GBE_INI30260)
PSS007030|
European Ancestry|
64,570 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean reticulocyte volume : 0.15675 [0.15171, 0.16179]
Incremental R2 (full-covars): 0.14554
PGS R2 (no covariates): 0.14631 [0.14138, 0.15124]
age, sex, UKB array type, Genotype PCs
PPM007708 PGS000988
(GBE_INI30290)
PSS007036|
African Ancestry|
5,974 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte % : 0.02767 [0.0198, 0.03553]
Incremental R2 (full-covars): 0.01965
PGS R2 (no covariates): 0.01997 [0.01324, 0.0267]
age, sex, UKB array type, Genotype PCs
PPM007709 PGS000988
(GBE_INI30290)
PSS007037|
East Asian Ancestry|
1,623 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte % : 0.05671 [0.03542, 0.07799]
Incremental R2 (full-covars): 0.04573
PGS R2 (no covariates): 0.04876 [0.02885, 0.06866]
age, sex, UKB array type, Genotype PCs
PPM007710 PGS000988
(GBE_INI30290)
PSS007038|
European Ancestry|
23,681 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte % : 0.08594 [0.07929, 0.0926]
Incremental R2 (full-covars): 0.07798
PGS R2 (no covariates): 0.07863 [0.07222, 0.08505]
age, sex, UKB array type, Genotype PCs
PPM007711 PGS000988
(GBE_INI30290)
PSS007039|
South Asian Ancestry|
7,321 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte % : 0.07357 [0.06245, 0.0847]
Incremental R2 (full-covars): 0.06049
PGS R2 (no covariates): 0.06609 [0.05546, 0.07672]
age, sex, UKB array type, Genotype PCs
PPM007712 PGS000988
(GBE_INI30290)
PSS007040|
European Ancestry|
64,524 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte % : 0.01671 [0.0148, 0.01863]
Incremental R2 (full-covars): 0.01605
PGS R2 (no covariates): 0.016 [0.01412, 0.01788]
age, sex, UKB array type, Genotype PCs
PPM007715 PGS000989
(GBE_INI30240)
PSS007018|
European Ancestry|
23,688 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte % : 0.0318 [0.02751, 0.03609]
Incremental R2 (full-covars): 0.02883
PGS R2 (no covariates): 0.02905 [0.02494, 0.03316]
age, sex, UKB array type, Genotype PCs
PPM007713 PGS000989
(GBE_INI30240)
PSS007016|
African Ancestry|
5,974 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte % : 0.01993 [0.01321, 0.02666]
Incremental R2 (full-covars): 0.01309
PGS R2 (no covariates): 0.01384 [0.0082, 0.01948]
age, sex, UKB array type, Genotype PCs
PPM007714 PGS000989
(GBE_INI30240)
PSS007017|
East Asian Ancestry|
1,623 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte % : 0.05032 [0.03013, 0.0705]
Incremental R2 (full-covars): 0.03871
PGS R2 (no covariates): 0.03842 [0.02056, 0.05628]
age, sex, UKB array type, Genotype PCs
PPM007716 PGS000989
(GBE_INI30240)
PSS007019|
South Asian Ancestry|
7,323 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte % : 0.03312 [0.02533, 0.04091]
Incremental R2 (full-covars): 0.02678
PGS R2 (no covariates): 0.02784 [0.02066, 0.03502]
age, sex, UKB array type, Genotype PCs
PPM007717 PGS000989
(GBE_INI30240)
PSS007020|
European Ancestry|
64,569 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte % : 0.02928 [0.02677, 0.03179]
Incremental R2 (full-covars): 0.02823
PGS R2 (no covariates): 0.02826 [0.0258, 0.03073]
age, sex, UKB array type, Genotype PCs
PPM008138 PGS001076
(GBE_INI30210)
PSS007006|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill % : 0.02749 [0.01965, 0.03533]
Incremental R2 (full-covars): 0.01358
PGS R2 (no covariates): 0.01502 [0.00915, 0.02088]
age, sex, UKB array type, Genotype PCs
PPM008139 PGS001076
(GBE_INI30210)
PSS007007|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill % : 0.0678 [0.0448, 0.0908]
Incremental R2 (full-covars): 0.03179
PGS R2 (no covariates): 0.03326 [0.01655, 0.04996]
age, sex, UKB array type, Genotype PCs
PPM008140 PGS001076
(GBE_INI30210)
PSS007008|
European Ancestry|
24,130 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill % : 0.10724 [0.09998, 0.1145]
Incremental R2 (full-covars): 0.09158
PGS R2 (no covariates): 0.09579 [0.08884, 0.10274]
age, sex, UKB array type, Genotype PCs
PPM008141 PGS001076
(GBE_INI30210)
PSS007009|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill % : 0.08004 [0.06852, 0.09157]
Incremental R2 (full-covars): 0.0618
PGS R2 (no covariates): 0.06258 [0.05219, 0.07296]
age, sex, UKB array type, Genotype PCs
PPM008142 PGS001076
(GBE_INI30210)
PSS007010|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill % : 0.10364 [0.09929, 0.108]
Incremental R2 (full-covars): 0.09566
PGS R2 (no covariates): 0.09594 [0.09171, 0.10016]
age, sex, UKB array type, Genotype PCs
PPM008143 PGS001077
(GBE_INI30200)
PSS007001|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill % Incremental R2 (full-covars): 0.01344
: 0.04156 [0.03206, 0.05106]
PGS R2 (no covariates): 0.01383 [0.00819, 0.01946]
age, sex, UKB array type, Genotype PCs
PPM008144 PGS001077
(GBE_INI30200)
PSS007002|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill % : 0.07662 [0.0524, 0.10084]
Incremental R2 (full-covars): 0.04345
PGS R2 (no covariates): 0.04564 [0.02632, 0.06496]
age, sex, UKB array type, Genotype PCs
PPM008145 PGS001077
(GBE_INI30200)
PSS007003|
European Ancestry|
24,130 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill % : 0.07418 [0.06792, 0.08044]
Incremental R2 (full-covars): 0.07151
PGS R2 (no covariates): 0.07289 [0.06667, 0.0791]
age, sex, UKB array type, Genotype PCs
PPM008146 PGS001077
(GBE_INI30200)
PSS007004|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill % : 0.05036 [0.04093, 0.0598]
Incremental R2 (full-covars): 0.04554
PGS R2 (no covariates): 0.04441 [0.03549, 0.05333]
age, sex, UKB array type, Genotype PCs
PPM008147 PGS001077
(GBE_INI30200)
PSS007005|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill % : 0.08175 [0.07779, 0.08572]
Incremental R2 (full-covars): 0.07935
PGS R2 (no covariates): 0.07934 [0.07542, 0.08325]
age, sex, UKB array type, Genotype PCs
PPM008148 PGS001078
(GBE_INI30190)
PSS006996|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte % : 0.03107 [0.02277, 0.03938]
Incremental R2 (full-covars): 0.01068
PGS R2 (no covariates): 0.01162 [0.00644, 0.0168]
age, sex, UKB array type, Genotype PCs
PPM008149 PGS001078
(GBE_INI30190)
PSS006997|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte % : 0.10068 [0.07364, 0.12772]
Incremental R2 (full-covars): 0.04628
PGS R2 (no covariates): 0.04808 [0.0283, 0.06786]
age, sex, UKB array type, Genotype PCs
PPM008150 PGS001078
(GBE_INI30190)
PSS006998|
European Ancestry|
24,130 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte % : 0.12442 [0.11675, 0.13209]
Incremental R2 (full-covars): 0.08036
PGS R2 (no covariates): 0.08169 [0.07518, 0.08821]
age, sex, UKB array type, Genotype PCs
PPM008151 PGS001078
(GBE_INI30190)
PSS006999|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte % : 0.12434 [0.11066, 0.13801]
Incremental R2 (full-covars): 0.05529
PGS R2 (no covariates): 0.05423 [0.04448, 0.06398]
age, sex, UKB array type, Genotype PCs
PPM008152 PGS001078
(GBE_INI30190)
PSS007000|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte % : 0.12757 [0.12287, 0.13228]
Incremental R2 (full-covars): 0.08527
PGS R2 (no covariates): 0.08574 [0.0817, 0.08978]
age, sex, UKB array type, Genotype PCs
PPM008153 PGS001079
(GBE_INI30110)
PSS006961|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet distribution width : 0.08809 [0.07494, 0.10125]
Incremental R2 (full-covars): 0.05017
PGS R2 (no covariates): 0.05279 [0.04222, 0.06337]
age, sex, UKB array type, Genotype PCs
PPM008154 PGS001079
(GBE_INI30110)
PSS006962|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet distribution width : 0.1275 [0.09798, 0.15703]
Incremental R2 (full-covars): 0.09522
PGS R2 (no covariates): 0.09877 [0.07193, 0.12561]
age, sex, UKB array type, Genotype PCs
PPM008155 PGS001079
(GBE_INI30110)
PSS006963|
European Ancestry|
24,171 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet distribution width : 0.2279 [0.21875, 0.23705]
Incremental R2 (full-covars): 0.20117
PGS R2 (no covariates): 0.2053 [0.19636, 0.21424]
age, sex, UKB array type, Genotype PCs
PPM008156 PGS001079
(GBE_INI30110)
PSS006964|
South Asian Ancestry|
7,519 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet distribution width : 0.18488 [0.16936, 0.2004]
Incremental R2 (full-covars): 0.16662
PGS R2 (no covariates): 0.16657 [0.15151, 0.18163]
age, sex, UKB array type, Genotype PCs
PPM008157 PGS001079
(GBE_INI30110)
PSS006965|
European Ancestry|
65,601 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet distribution width : 0.22746 [0.2219, 0.23302]
Incremental R2 (full-covars): 0.20559
PGS R2 (no covariates): 0.20528 [0.19985, 0.21072]
age, sex, UKB array type, Genotype PCs
PPM008482 PGS001152
(GBE_INI30070)
PSS006941|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell distribution width : 0.02633 [0.01865, 0.03401]
Incremental R2 (full-covars): 0.00466
PGS R2 (no covariates): 0.00617 [0.00238, 0.00997]
age, sex, UKB array type, Genotype PCs
PPM008483 PGS001152
(GBE_INI30070)
PSS006942|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell distribution width : 0.06947 [0.04623, 0.09271]
Incremental R2 (full-covars): 0.04028
PGS R2 (no covariates): 0.04714 [0.02754, 0.06675]
age, sex, UKB array type, Genotype PCs
PPM008484 PGS001152
(GBE_INI30070)
PSS006943|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell distribution width : 0.08241 [0.07587, 0.08895]
Incremental R2 (full-covars): 0.07409
PGS R2 (no covariates): 0.0754 [0.06909, 0.0817]
age, sex, UKB array type, Genotype PCs
PPM008485 PGS001152
(GBE_INI30070)
PSS006944|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell distribution width : 0.06357 [0.05312, 0.07403]
Incremental R2 (full-covars): 0.04077
PGS R2 (no covariates): 0.04137 [0.03274, 0.05]
age, sex, UKB array type, Genotype PCs
PPM008486 PGS001152
(GBE_INI30070)
PSS006945|
European Ancestry|
65,638 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell distribution width : 0.0852 [0.08117, 0.08923]
Incremental R2 (full-covars): 0.07926
PGS R2 (no covariates): 0.07945 [0.07553, 0.08337]
age, sex, UKB array type, Genotype PCs
PPM008537 PGS001163
(GBE_INI30130)
PSS006971|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte count : 0.02543 [0.01787, 0.03298]
Incremental R2 (full-covars): 0.01339
PGS R2 (no covariates): 0.01659 [0.01043, 0.02274]
age, sex, UKB array type, Genotype PCs
PPM008538 PGS001163
(GBE_INI30130)
PSS006972|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte count : 0.10427 [0.07686, 0.13168]
Incremental R2 (full-covars): 0.03555
PGS R2 (no covariates): 0.04025 [0.022, 0.0585]
age, sex, UKB array type, Genotype PCs
PPM008539 PGS001163
(GBE_INI30130)
PSS006973|
European Ancestry|
24,129 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte count : 0.12792 [0.12017, 0.13567]
Incremental R2 (full-covars): 0.0805
PGS R2 (no covariates): 0.08361 [0.07703, 0.09019]
age, sex, UKB array type, Genotype PCs
PPM008540 PGS001163
(GBE_INI30130)
PSS006974|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte count : 0.09808 [0.08557, 0.11059]
Incremental R2 (full-covars): 0.05583
PGS R2 (no covariates): 0.05525 [0.04542, 0.06508]
age, sex, UKB array type, Genotype PCs
PPM008541 PGS001163
(GBE_INI30130)
PSS006975|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Monocyte count : 0.11973 [0.11513, 0.12432]
Incremental R2 (full-covars): 0.081
PGS R2 (no covariates): 0.08138 [0.07742, 0.08533]
age, sex, UKB array type, Genotype PCs
PPM008570 PGS001172
(GBE_INI30150)
PSS006981|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill count : 0.02165 [0.01465, 0.02865]
Incremental R2 (full-covars): 0.01273
PGS R2 (no covariates): 0.01483 [0.009, 0.02067]
age, sex, UKB array type, Genotype PCs
PPM008571 PGS001172
(GBE_INI30150)
PSS006982|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill count : 0.07017 [0.04683, 0.09352]
Incremental R2 (full-covars): 0.02406
PGS R2 (no covariates): 0.02686 [0.01175, 0.04197]
age, sex, UKB array type, Genotype PCs
PPM008572 PGS001172
(GBE_INI30150)
PSS006983|
European Ancestry|
24,129 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill count : 0.10592 [0.09869, 0.11315]
Incremental R2 (full-covars): 0.08944
PGS R2 (no covariates): 0.0939 [0.08701, 0.1008]
age, sex, UKB array type, Genotype PCs
PPM008573 PGS001172
(GBE_INI30150)
PSS006984|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill count : 0.06486 [0.05432, 0.07541]
Incremental R2 (full-covars): 0.05229
PGS R2 (no covariates): 0.05348 [0.04379, 0.06318]
age, sex, UKB array type, Genotype PCs
PPM008574 PGS001172
(GBE_INI30150)
PSS006985|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Eosinophill count : 0.10264 [0.0983, 0.10698]
Incremental R2 (full-covars): 0.09343
PGS R2 (no covariates): 0.09398 [0.08978, 0.09817]
age, sex, UKB array type, Genotype PCs
PPM008575 PGS001173
(GBE_INI30140)
PSS006976|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill count : 0.06347 [0.052, 0.07494]
Incremental R2 (full-covars): 0.00644
PGS R2 (no covariates): 0.01221 [0.00691, 0.01752]
age, sex, UKB array type, Genotype PCs
PPM008576 PGS001173
(GBE_INI30140)
PSS006977|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill count : 0.05754 [0.03611, 0.07896]
Incremental R2 (full-covars): 0.037
PGS R2 (no covariates): 0.0354 [0.0182, 0.0526]
age, sex, UKB array type, Genotype PCs
PPM008577 PGS001173
(GBE_INI30140)
PSS006978|
European Ancestry|
24,129 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill count : 0.08794 [0.08123, 0.09466]
Incremental R2 (full-covars): 0.07899
PGS R2 (no covariates): 0.08282 [0.07627, 0.08938]
age, sex, UKB array type, Genotype PCs
PPM008578 PGS001173
(GBE_INI30140)
PSS006979|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill count : 0.07553 [0.06428, 0.08677]
Incremental R2 (full-covars): 0.0671
PGS R2 (no covariates): 0.06762 [0.05688, 0.07835]
age, sex, UKB array type, Genotype PCs
PPM008579 PGS001173
(GBE_INI30140)
PSS006980|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Neutrophill count : 0.09385 [0.08966, 0.09804]
Incremental R2 (full-covars): 0.08871
PGS R2 (no covariates): 0.08935 [0.08524, 0.09346]
age, sex, UKB array type, Genotype PCs
PPM008616 PGS001199
(GBE_INI30120)
PSS006968|
European Ancestry|
24,129 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte count : 0.04047 [0.03568, 0.04526]
Incremental R2 (full-covars): 0.03437
PGS R2 (no covariates): 0.03502 [0.03053, 0.0395]
age, sex, UKB array type, Genotype PCs
PPM008614 PGS001199
(GBE_INI30120)
PSS006966|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte count : 0.01509 [0.00921, 0.02097]
Incremental R2 (full-covars): 0.0048
PGS R2 (no covariates): 0.00655 [0.00264, 0.01046]
age, sex, UKB array type, Genotype PCs
PPM008615 PGS001199
(GBE_INI30120)
PSS006967|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte count : 0.07751 [0.05317, 0.10185]
Incremental R2 (full-covars): 0.02783
PGS R2 (no covariates): 0.0308 [0.01468, 0.04692]
age, sex, UKB array type, Genotype PCs
PPM008617 PGS001199
(GBE_INI30120)
PSS006969|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte count : 0.04041 [0.03187, 0.04896]
Incremental R2 (full-covars): 0.02891
PGS R2 (no covariates): 0.02928 [0.02192, 0.03663]
age, sex, UKB array type, Genotype PCs
PPM008618 PGS001199
(GBE_INI30120)
PSS006970|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte count : 0.02566 [0.0233, 0.02801]
Incremental R2 (full-covars): 0.02051
PGS R2 (no covariates): 0.02072 [0.01859, 0.02285]
age, sex, UKB array type, Genotype PCs
PPM008619 PGS001200
(GBE_INI30100)
PSS006956|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean platelet volume : 0.11523 [0.10064, 0.12983]
Incremental R2 (full-covars): 0.10713
PGS R2 (no covariates): 0.10764 [0.09341, 0.12187]
age, sex, UKB array type, Genotype PCs
PPM008620 PGS001200
(GBE_INI30100)
PSS006957|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean platelet volume : 0.22982 [0.19483, 0.26481]
Incremental R2 (full-covars): 0.1912
PGS R2 (no covariates): 0.20572 [0.17158, 0.23986]
age, sex, UKB array type, Genotype PCs
PPM008621 PGS001200
(GBE_INI30100)
PSS006958|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean platelet volume : 0.36048 [0.35094, 0.37001]
Incremental R2 (full-covars): 0.35332
PGS R2 (no covariates): 0.3577 [0.34816, 0.36724]
age, sex, UKB array type, Genotype PCs
PPM008622 PGS001200
(GBE_INI30100)
PSS006959|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean platelet volume : 0.26489 [0.24813, 0.28164]
Incremental R2 (full-covars): 0.25606
PGS R2 (no covariates): 0.25974 [0.24303, 0.27644]
age, sex, UKB array type, Genotype PCs
PPM008623 PGS001200
(GBE_INI30100)
PSS006960|
European Ancestry|
65,636 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean platelet volume : 0.36177 [0.35598, 0.36757]
Incremental R2 (full-covars): 0.35994
PGS R2 (no covariates): 0.36024 [0.35444, 0.36603]
age, sex, UKB array type, Genotype PCs
PPM008624 PGS001218
(GBE_INI30060)
PSS006936|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin concentration : 0.01334 [0.0078, 0.01888]
Incremental R2 (full-covars): 0.0007
PGS R2 (no covariates): 0.00244 [0.00004, 0.00483]
age, sex, UKB array type, Genotype PCs
PPM008625 PGS001218
(GBE_INI30060)
PSS006937|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin concentration : 0.05415 [0.03329, 0.07501]
Incremental R2 (full-covars): 0.01409
PGS R2 (no covariates): 0.01986 [0.00677, 0.03295]
age, sex, UKB array type, Genotype PCs
PPM008626 PGS001218
(GBE_INI30060)
PSS006938|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin concentration : 0.02769 [0.02367, 0.03171]
Incremental R2 (full-covars): 0.01601
PGS R2 (no covariates): 0.01701 [0.01382, 0.02019]
age, sex, UKB array type, Genotype PCs
PPM008627 PGS001218
(GBE_INI30060)
PSS006939|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin concentration : 0.04592 [0.03687, 0.05498]
Incremental R2 (full-covars): 0.01608
PGS R2 (no covariates): 0.01906 [0.01306, 0.02505]
age, sex, UKB array type, Genotype PCs
PPM008628 PGS001218
(GBE_INI30060)
PSS006940|
European Ancestry|
65,635 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin concentration : 0.03753 [0.03472, 0.04035]
Incremental R2 (full-covars): 0.02447
PGS R2 (no covariates): 0.02534 [0.023, 0.02768]
age, sex, UKB array type, Genotype PCs
PPM008629 PGS001219
(GBE_INI30050)
PSS006931|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin : 0.03354 [0.02494, 0.04215]
Incremental R2 (full-covars): 0.00833
PGS R2 (no covariates): 0.01254 [0.00717, 0.01792]
age, sex, UKB array type, Genotype PCs
PPM008630 PGS001219
(GBE_INI30050)
PSS006932|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin : 0.0892 [0.06342, 0.11498]
Incremental R2 (full-covars): 0.03143
PGS R2 (no covariates): 0.0524 [0.03184, 0.07296]
age, sex, UKB array type, Genotype PCs
PPM008631 PGS001219
(GBE_INI30050)
PSS006933|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin : 0.16096 [0.1526, 0.16932]
Incremental R2 (full-covars): 0.12049
PGS R2 (no covariates): 0.13012 [0.12233, 0.13791]
age, sex, UKB array type, Genotype PCs
PPM008632 PGS001219
(GBE_INI30050)
PSS006934|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin : 0.11958 [0.1061, 0.13306]
Incremental R2 (full-covars): 0.06684
PGS R2 (no covariates): 0.07101 [0.06005, 0.08197]
age, sex, UKB array type, Genotype PCs
PPM008633 PGS001219
(GBE_INI30050)
PSS006935|
European Ancestry|
65,638 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular haemoglobin : 0.18797 [0.18266, 0.19328]
Incremental R2 (full-covars): 0.1678
PGS R2 (no covariates): 0.1703 [0.16513, 0.17547]
age, sex, UKB array type, Genotype PCs
PPM008634 PGS001220
(GBE_INI30040)
PSS006926|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular volume : 0.03909 [0.02986, 0.04833]
Incremental R2 (full-covars): 0.01317
PGS R2 (no covariates): 0.01523 [0.00932, 0.02114]
age, sex, UKB array type, Genotype PCs
PPM008635 PGS001220
(GBE_INI30040)
PSS006927|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular volume : 0.09134 [0.06532, 0.11737]
Incremental R2 (full-covars): 0.03736
PGS R2 (no covariates): 0.05987 [0.03807, 0.08167]
age, sex, UKB array type, Genotype PCs
PPM008636 PGS001220
(GBE_INI30040)
PSS006928|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular volume : 0.20688 [0.19792, 0.21584]
Incremental R2 (full-covars): 0.15861
PGS R2 (no covariates): 0.17414 [0.16558, 0.1827]
age, sex, UKB array type, Genotype PCs
PPM008637 PGS001220
(GBE_INI30040)
PSS006929|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular volume : 0.12834 [0.11451, 0.14216]
Incremental R2 (full-covars): 0.07837
PGS R2 (no covariates): 0.08395 [0.0722, 0.0957]
age, sex, UKB array type, Genotype PCs
PPM008638 PGS001220
(GBE_INI30040)
PSS006930|
European Ancestry|
65,638 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Mean corpuscular volume : 0.21614 [0.21064, 0.22164]
Incremental R2 (full-covars): 0.19948
PGS R2 (no covariates): 0.20189 [0.19648, 0.2073]
age, sex, UKB array type, Genotype PCs
PPM008639 PGS001225
(GBE_INI30030)
PSS006921|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haematocrit % Incremental R2 (full-covars): 0.01035
: 0.39181 [0.37331, 0.41032]
PGS R2 (no covariates): 0.01326 [0.00774, 0.01879]
age, sex, UKB array type, Genotype PCs
PPM008640 PGS001225
(GBE_INI30030)
PSS006922|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haematocrit % : 0.4128 [0.37705, 0.44856]
Incremental R2 (full-covars): 0.02196
PGS R2 (no covariates): 0.02063 [0.0073, 0.03396]
age, sex, UKB array type, Genotype PCs
PPM008641 PGS001225
(GBE_INI30030)
PSS006923|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haematocrit % : 0.396 [0.38656, 0.40544]
Incremental R2 (full-covars): 0.05878
PGS R2 (no covariates): 0.06263 [0.0568, 0.06846]
age, sex, UKB array type, Genotype PCs
PPM008642 PGS001225
(GBE_INI30030)
PSS006924|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haematocrit % : 0.4249 [0.4083, 0.4415]
Incremental R2 (full-covars): 0.02482
PGS R2 (no covariates): 0.0222 [0.01575, 0.02865]
age, sex, UKB array type, Genotype PCs
PPM008643 PGS001225
(GBE_INI30030)
PSS006925|
European Ancestry|
65,638 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haematocrit % : 0.39123 [0.38548, 0.39698]
Incremental R2 (full-covars): 0.06504
PGS R2 (no covariates): 0.06544 [0.06183, 0.06904]
age, sex, UKB array type, Genotype PCs
PPM008699 PGS001238
(GBE_INI30080)
PSS006946|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet count : 0.13129 [0.11599, 0.14659]
Incremental R2 (full-covars): 0.04423
PGS R2 (no covariates): 0.04881 [0.03859, 0.05902]
age, sex, UKB array type, Genotype PCs
PPM008700 PGS001238
(GBE_INI30080)
PSS006947|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet count : 0.14398 [0.1132, 0.17476]
Incremental R2 (full-covars): 0.09414
PGS R2 (no covariates): 0.09846 [0.07165, 0.12527]
age, sex, UKB array type, Genotype PCs
PPM008701 PGS001238
(GBE_INI30080)
PSS006948|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet count : 0.26403 [0.25464, 0.27343]
Incremental R2 (full-covars): 0.21574
PGS R2 (no covariates): 0.21973 [0.21064, 0.22881]
age, sex, UKB array type, Genotype PCs
PPM008702 PGS001238
(GBE_INI30080)
PSS006949|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet count : 0.24088 [0.22438, 0.25738]
Incremental R2 (full-covars): 0.15169
PGS R2 (no covariates): 0.153 [0.13833, 0.16767]
age, sex, UKB array type, Genotype PCs
PPM008703 PGS001238
(GBE_INI30080)
PSS006950|
European Ancestry|
65,637 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet count : 0.26678 [0.26106, 0.2725]
Incremental R2 (full-covars): 0.20845
PGS R2 (no covariates): 0.20987 [0.20441, 0.21533]
age, sex, UKB array type, Genotype PCs
PPM008704 PGS001239
(GBE_INI30000)
PSS006891|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.05282 [0.04224, 0.0634]
Incremental R2 (full-covars): 0.00963
PGS R2 (no covariates): 0.01451 [0.00874, 0.02028]
age, sex, UKB array type, Genotype PCs
PPM008705 PGS001239
(GBE_INI30000)
PSS006892|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.07596 [0.05182, 0.10009]
Incremental R2 (full-covars): 0.0496
PGS R2 (no covariates): 0.05069 [0.03044, 0.07095]
age, sex, UKB array type, Genotype PCs
PPM008706 PGS001239
(GBE_INI30000)
PSS006893|
European Ancestry|
24,174 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.08839 [0.08166, 0.09513]
Incremental R2 (full-covars): 0.07763
PGS R2 (no covariates): 0.08212 [0.07559, 0.08865]
age, sex, UKB array type, Genotype PCs
PPM008707 PGS001239
(GBE_INI30000)
PSS006894|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.07166 [0.06066, 0.08267]
Incremental R2 (full-covars): 0.06404
PGS R2 (no covariates): 0.06438 [0.05387, 0.07489]
age, sex, UKB array type, Genotype PCs
PPM008708 PGS001239
(GBE_INI30000)
PSS006895|
European Ancestry|
65,638 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.0777 [0.07382, 0.08158]
Incremental R2 (full-covars): 0.07177
PGS R2 (no covariates): 0.07264 [0.06887, 0.07641]
age, sex, UKB array type, Genotype PCs
PPM008709 PGS001240
(GBE_INI30010)
PSS006896|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell count : 0.26906 [0.25063, 0.28749]
Incremental R2 (full-covars): 0.01652
PGS R2 (no covariates): 0.01819 [0.01175, 0.02463]
age, sex, UKB array type, Genotype PCs
PPM008710 PGS001240
(GBE_INI30010)
PSS006897|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell count : 0.32546 [0.289, 0.36193]
Incremental R2 (full-covars): 0.04519
PGS R2 (no covariates): 0.05665 [0.03538, 0.07793]
age, sex, UKB array type, Genotype PCs
PPM008711 PGS001240
(GBE_INI30010)
PSS006898|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell count : 0.37954 [0.37005, 0.38904]
Incremental R2 (full-covars): 0.10462
PGS R2 (no covariates): 0.11155 [0.10418, 0.11892]
age, sex, UKB array type, Genotype PCs
PPM008712 PGS001240
(GBE_INI30010)
PSS006899|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell count : 0.33598 [0.31894, 0.35302]
Incremental R2 (full-covars): 0.05745
PGS R2 (no covariates): 0.05295 [0.0433, 0.0626]
age, sex, UKB array type, Genotype PCs
PPM008713 PGS001240
(GBE_INI30010)
PSS006900|
European Ancestry|
65,638 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Red blood cell count : 0.37344 [0.36766, 0.37922]
Incremental R2 (full-covars): 0.11681
PGS R2 (no covariates): 0.11784 [0.11327, 0.12241]
age, sex, UKB array type, Genotype PCs
PPM005139 PGS001352
(MAGICTA_EUR_PGS_HbA1c)
PSS003594|
European Ancestry|
61,820 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Glycated haemoglobin levels (HbA1c) : 0.178
PPM005142 PGS001352
(MAGICTA_EUR_PGS_HbA1c)
PSS003591|
African Ancestry|
6,647 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Glycated haemoglobin levels (HbA1c) : 0.012
PPM005145 PGS001352
(MAGICTA_EUR_PGS_HbA1c)
PSS003593|
East Asian Ancestry|
31,236 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Glycated haemoglobin levels (HbA1c) : 0.026
PPM005146 PGS001352
(MAGICTA_EUR_PGS_HbA1c)
PSS003592|
African Ancestry|
4,441 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Glycated haemoglobin levels (HbA1c) : 0.006
PPM007058 PGS001377
(GBE_INI30220)
PSS007014|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill % : 0.01668 [0.01106, 0.0223]
Incremental R2 (full-covars): 0.01178
PGS R2 (no covariates): 0.01253 [0.00763, 0.01742]
age, sex, UKB array type, Genotype PCs
PPM007059 PGS001377
(GBE_INI30220)
PSS007015|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill % : 0.01674 [0.01482, 0.01866]
Incremental R2 (full-covars): 0.01485
PGS R2 (no covariates): 0.01504 [0.01321, 0.01686]
age, sex, UKB array type, Genotype PCs
PPM007055 PGS001377
(GBE_INI30220)
PSS007011|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill % : 0.00639 [0.00253, 0.01025]
Incremental R2 (full-covars): 0.00238
PGS R2 (no covariates): 0.00249 [0.00007, 0.00491]
age, sex, UKB array type, Genotype PCs
PPM007056 PGS001377
(GBE_INI30220)
PSS007012|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill % : 0.01523 [0.00371, 0.02675]
Incremental R2 (full-covars): 0.00867
PGS R2 (no covariates): 0.00896 [0.00007, 0.01786]
age, sex, UKB array type, Genotype PCs
PPM007057 PGS001377
(GBE_INI30220)
PSS007013|
European Ancestry|
24,130 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill % : 0.01922 [0.01584, 0.0226]
Incremental R2 (full-covars): 0.01406
PGS R2 (no covariates): 0.0152 [0.01219, 0.01822]
age, sex, UKB array type, Genotype PCs
PPM007045 PGS001378
(GBE_INI30160)
PSS006986|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill count : 0.0091 [0.0045, 0.01369]
Incremental R2 (full-covars): 0.00051
PGS R2 (no covariates): 0.00175 [-0.00028, 0.00379]
age, sex, UKB array type, Genotype PCs
PPM007046 PGS001378
(GBE_INI30160)
PSS006987|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill count : 0.01746 [0.00516, 0.02976]
Incremental R2 (full-covars): 0.00946
PGS R2 (no covariates): 0.00963 [0.00042, 0.01883]
age, sex, UKB array type, Genotype PCs
PPM007047 PGS001378
(GBE_INI30160)
PSS006988|
European Ancestry|
24,129 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill count : 0.01903 [0.01567, 0.0224]
Incremental R2 (full-covars): 0.01496
PGS R2 (no covariates): 0.01602 [0.01293, 0.01911]
age, sex, UKB array type, Genotype PCs
PPM007048 PGS001378
(GBE_INI30160)
PSS006989|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill count : 0.01814 [0.01228, 0.02399]
Incremental R2 (full-covars): 0.01206
PGS R2 (no covariates): 0.01266 [0.00775, 0.01758]
age, sex, UKB array type, Genotype PCs
PPM007049 PGS001378
(GBE_INI30160)
PSS006990|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Basophill count : 0.01717 [0.01523, 0.01911]
Incremental R2 (full-covars): 0.01451
PGS R2 (no covariates): 0.01475 [0.01294, 0.01655]
age, sex, UKB array type, Genotype PCs
PPM007035 PGS001400
(GBE_INI30020)
PSS006901|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haemoglobin concentration : 0.38602 [0.36748, 0.40456]
Incremental R2 (full-covars): 0.00491
PGS R2 (no covariates): 0.01221 [0.00691, 0.01752]
age, sex, UKB array type, Genotype PCs
PPM007036 PGS001400
(GBE_INI30020)
PSS006902|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haemoglobin concentration : 0.40783 [0.37199, 0.44367]
Incremental R2 (full-covars): 0.02084
PGS R2 (no covariates): 0.01558 [0.00394, 0.02723]
age, sex, UKB array type, Genotype PCs
PPM007037 PGS001400
(GBE_INI30020)
PSS006903|
European Ancestry|
24,175 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haemoglobin concentration : 0.43532 [0.42607, 0.44457]
Incremental R2 (full-covars): 0.06361
PGS R2 (no covariates): 0.06382 [0.05795, 0.06969]
age, sex, UKB array type, Genotype PCs
PPM007038 PGS001400
(GBE_INI30020)
PSS006904|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haemoglobin concentration : 0.4337 [0.41719, 0.45022]
Incremental R2 (full-covars): 0.02482
PGS R2 (no covariates): 0.01823 [0.01236, 0.0241]
age, sex, UKB array type, Genotype PCs
PPM007039 PGS001400
(GBE_INI30020)
PSS006905|
European Ancestry|
65,638 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Haemoglobin concentration : 0.42918 [0.42353, 0.43482]
Incremental R2 (full-covars): 0.06776
PGS R2 (no covariates): 0.06681 [0.06316, 0.07045]
age, sex, UKB array type, Genotype PCs
PPM007070 PGS001406
(GBE_INI30300)
PSS007041|
African Ancestry|
5,974 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte count : 0.03376 [0.02514, 0.04239]
Incremental R2 (full-covars): 0.02097
PGS R2 (no covariates): 0.02166 [0.01466, 0.02866]
age, sex, UKB array type, Genotype PCs
PPM007071 PGS001406
(GBE_INI30300)
PSS007042|
East Asian Ancestry|
1,623 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte count : 0.08784 [0.06222, 0.11346]
Incremental R2 (full-covars): 0.06019
PGS R2 (no covariates): 0.06306 [0.04077, 0.08536]
age, sex, UKB array type, Genotype PCs
PPM007072 PGS001406
(GBE_INI30300)
PSS007043|
European Ancestry|
23,681 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte count : 0.116 [0.10853, 0.12348]
Incremental R2 (full-covars): 0.09413
PGS R2 (no covariates): 0.09553 [0.08859, 0.10247]
age, sex, UKB array type, Genotype PCs
PPM007073 PGS001406
(GBE_INI30300)
PSS007044|
South Asian Ancestry|
7,321 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte count : 0.09799 [0.08549, 0.1105]
Incremental R2 (full-covars): 0.07113
PGS R2 (no covariates): 0.07659 [0.06528, 0.08791]
age, sex, UKB array type, Genotype PCs
PPM007074 PGS001406
(GBE_INI30300)
PSS007045|
European Ancestry|
64,524 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: High light scatter reticulocyte count : 0.12733 [0.12263, 0.13203]
Incremental R2 (full-covars): 0.11178
PGS R2 (no covariates): 0.1113 [0.10683, 0.11578]
age, sex, UKB array type, Genotype PCs
PPM007065 PGS001408
(GBE_INI30280)
PSS007031|
African Ancestry|
5,973 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.03195 [0.02354, 0.04036]
Incremental R2 (full-covars): 0.01989
PGS R2 (no covariates): 0.01953 [0.01287, 0.02619]
age, sex, UKB array type, Genotype PCs
PPM007066 PGS001408
(GBE_INI30280)
PSS007032|
East Asian Ancestry|
1,623 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.04983 [0.02973, 0.06992]
Incremental R2 (full-covars): 0.02998
PGS R2 (no covariates): 0.03394 [0.01708, 0.05081]
age, sex, UKB array type, Genotype PCs
PPM007067 PGS001408
(GBE_INI30280)
PSS007033|
European Ancestry|
23,680 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.10073 [0.09364, 0.10782]
Incremental R2 (full-covars): 0.08989
PGS R2 (no covariates): 0.09045 [0.08366, 0.09725]
age, sex, UKB array type, Genotype PCs
PPM007068 PGS001408
(GBE_INI30280)
PSS007034|
South Asian Ancestry|
7,321 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.07122 [0.06025, 0.0822]
Incremental R2 (full-covars): 0.05964
PGS R2 (no covariates): 0.06252 [0.05214, 0.0729]
age, sex, UKB array type, Genotype PCs
PPM007069 PGS001408
(GBE_INI30280)
PSS007035|
European Ancestry|
64,524 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.09976 [0.09547, 0.10405]
Incremental R2 (full-covars): 0.0902
PGS R2 (no covariates): 0.09063 [0.0865, 0.09477]
age, sex, UKB array type, Genotype PCs
PPM007054 PGS001414
(GBE_INI30180)
PSS006995|
European Ancestry|
65,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte % : 0.10838 [0.10395, 0.11281]
Incremental R2 (full-covars): 0.08842
PGS R2 (no covariates): 0.08835 [0.08426, 0.09245]
age, sex, UKB array type, Genotype PCs
PPM007050 PGS001414
(GBE_INI30180)
PSS006991|
African Ancestry|
6,120 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte % : 0.03982 [0.03051, 0.04913]
Incremental R2 (full-covars): 0.01769
PGS R2 (no covariates): 0.02018 [0.01341, 0.02694]
age, sex, UKB array type, Genotype PCs
PPM007051 PGS001414
(GBE_INI30180)
PSS006992|
East Asian Ancestry|
1,654 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte % : 0.08102 [0.05624, 0.10581]
Incremental R2 (full-covars): 0.04011
PGS R2 (no covariates): 0.03886 [0.02091, 0.05682]
age, sex, UKB array type, Genotype PCs
PPM007052 PGS001414
(GBE_INI30180)
PSS006993|
European Ancestry|
24,130 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte % : 0.09934 [0.09229, 0.10639]
Incremental R2 (full-covars): 0.08221
PGS R2 (no covariates): 0.084 [0.0774, 0.09059]
age, sex, UKB array type, Genotype PCs
PPM007053 PGS001414
(GBE_INI30180)
PSS006994|
South Asian Ancestry|
7,491 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Lymphocyte % : 0.05905 [0.04893, 0.06918]
Incremental R2 (full-covars): 0.05259
PGS R2 (no covariates): 0.05171 [0.04216, 0.06126]
age, sex, UKB array type, Genotype PCs
PPM007040 PGS001517
(GBE_INI30090)
PSS006951|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet crit : 0.1382 [0.12263, 0.15377]
Incremental R2 (full-covars): 0.02064
PGS R2 (no covariates): 0.0286 [0.02062, 0.03659]
age, sex, UKB array type, Genotype PCs
PPM007041 PGS001517
(GBE_INI30090)
PSS006952|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet crit : 0.15738 [0.1257, 0.18906]
Incremental R2 (full-covars): 0.08366
PGS R2 (no covariates): 0.07725 [0.05295, 0.10155]
age, sex, UKB array type, Genotype PCs
PPM007042 PGS001517
(GBE_INI30090)
PSS006953|
European Ancestry|
24,171 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet crit : 0.23874 [0.2295, 0.24797]
Incremental R2 (full-covars): 0.16467
PGS R2 (no covariates): 0.16697 [0.15852, 0.17543]
age, sex, UKB array type, Genotype PCs
PPM007043 PGS001517
(GBE_INI30090)
PSS006954|
South Asian Ancestry|
7,519 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet crit : 0.23898 [0.2225, 0.25545]
Incremental R2 (full-covars): 0.10472
PGS R2 (no covariates): 0.10873 [0.09572, 0.12174]
age, sex, UKB array type, Genotype PCs
PPM007044 PGS001517
(GBE_INI30090)
PSS006955|
European Ancestry|
65,601 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Platelet crit : 0.24748 [0.24183, 0.25313]
Incremental R2 (full-covars): 0.16016
PGS R2 (no covariates): 0.16141 [0.15632, 0.16649]
age, sex, UKB array type, Genotype PCs
PPM007061 PGS001528
(GBE_INI30250)
PSS007022|
East Asian Ancestry|
1,623 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte count : 0.07592 [0.05179, 0.10005]
Incremental R2 (full-covars): 0.04581
PGS R2 (no covariates): 0.04535 [0.02608, 0.06461]
age, sex, UKB array type, Genotype PCs
PPM007062 PGS001528
(GBE_INI30250)
PSS007023|
European Ancestry|
23,688 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte count : 0.04398 [0.039, 0.04896]
Incremental R2 (full-covars): 0.0298
PGS R2 (no covariates): 0.03007 [0.02589, 0.03425]
age, sex, UKB array type, Genotype PCs
PPM007063 PGS001528
(GBE_INI30250)
PSS007024|
South Asian Ancestry|
7,323 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte count : 0.05148 [0.04195, 0.06101]
Incremental R2 (full-covars): 0.03077
PGS R2 (no covariates): 0.03212 [0.02444, 0.0398]
age, sex, UKB array type, Genotype PCs
PPM007060 PGS001528
(GBE_INI30250)
PSS007021|
African Ancestry|
5,974 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte count : 0.03089 [0.02261, 0.03917]
Incremental R2 (full-covars): 0.01205
PGS R2 (no covariates): 0.01388 [0.00823, 0.01953]
age, sex, UKB array type, Genotype PCs
PPM007064 PGS001528
(GBE_INI30250)
PSS007025|
European Ancestry|
64,570 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Reticulocyte count : 0.0518 [0.04854, 0.05506]
Incremental R2 (full-covars): 0.03968
PGS R2 (no covariates): 0.03966 [0.03677, 0.04254]
age, sex, UKB array type, Genotype PCs
PPM010147 PGS001908
(portability-PLR_erythrocyte_width)
PSS009400|
European Ancestry|
19,392 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.3342 [0.3217, 0.3467] sex, age, birth date, deprivation index, 16 PCs
PPM010148 PGS001908
(portability-PLR_erythrocyte_width)
PSS009174|
European Ancestry|
3,996 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.3297 [0.3017, 0.3571] sex, age, birth date, deprivation index, 16 PCs
PPM010149 PGS001908
(portability-PLR_erythrocyte_width)
PSS008728|
European Ancestry|
6,422 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.2987 [0.2762, 0.3208] sex, age, birth date, deprivation index, 16 PCs
PPM010150 PGS001908
(portability-PLR_erythrocyte_width)
PSS008502|
Greater Middle Eastern Ancestry|
1,144 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.2615 [0.2062, 0.3152] sex, age, birth date, deprivation index, 16 PCs
PPM010151 PGS001908
(portability-PLR_erythrocyte_width)
PSS008280|
South Asian Ancestry|
6,035 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.2435 [0.2196, 0.2671] sex, age, birth date, deprivation index, 16 PCs
PPM010152 PGS001908
(portability-PLR_erythrocyte_width)
PSS008057|
East Asian Ancestry|
1,757 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.2371 [0.1922, 0.281] sex, age, birth date, deprivation index, 16 PCs
PPM010154 PGS001908
(portability-PLR_erythrocyte_width)
PSS008948|
African Ancestry|
3,680 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.1241 [0.092, 0.1558] sex, age, birth date, deprivation index, 16 PCs
PPM010153 PGS001908
(portability-PLR_erythrocyte_width)
PSS007844|
African Ancestry|
2,328 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.1157 [0.0753, 0.1558] sex, age, birth date, deprivation index, 16 PCs
PPM010155 PGS001909
(portability-PLR_erythrocyte)
PSS009399|
European Ancestry|
19,422 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.3987 [0.3868, 0.4105] sex, age, birth date, deprivation index, 16 PCs
PPM010156 PGS001909
(portability-PLR_erythrocyte)
PSS009173|
European Ancestry|
4,001 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.404 [0.3776, 0.4296] sex, age, birth date, deprivation index, 16 PCs
PPM010157 PGS001909
(portability-PLR_erythrocyte)
PSS008727|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.3387 [0.3169, 0.3602] sex, age, birth date, deprivation index, 16 PCs
PPM010158 PGS001909
(portability-PLR_erythrocyte)
PSS008501|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.3306 [0.2777, 0.3815] sex, age, birth date, deprivation index, 16 PCs
PPM010159 PGS001909
(portability-PLR_erythrocyte)
PSS008279|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.2916 [0.2684, 0.3145] sex, age, birth date, deprivation index, 16 PCs
PPM010160 PGS001909
(portability-PLR_erythrocyte)
PSS008056|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.2689 [0.2247, 0.3119] sex, age, birth date, deprivation index, 16 PCs
PPM010161 PGS001909
(portability-PLR_erythrocyte)
PSS007843|
African Ancestry|
2,342 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.1886 [0.149, 0.2275] sex, age, birth date, deprivation index, 16 PCs
PPM010162 PGS001909
(portability-PLR_erythrocyte)
PSS008947|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.1298 [0.098, 0.1614] sex, age, birth date, deprivation index, 16 PCs
PPM010275 PGS001925
(portability-PLR_haematocrit_perc)
PSS009411|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.3256 [0.3129, 0.3381] sex, age, birth date, deprivation index, 16 PCs
PPM010276 PGS001925
(portability-PLR_haematocrit_perc)
PSS009185|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.3126 [0.2843, 0.3404] sex, age, birth date, deprivation index, 16 PCs
PPM010277 PGS001925
(portability-PLR_haematocrit_perc)
PSS008739|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.2824 [0.2597, 0.3047] sex, age, birth date, deprivation index, 16 PCs
PPM010278 PGS001925
(portability-PLR_haematocrit_perc)
PSS008513|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.2516 [0.1962, 0.3053] sex, age, birth date, deprivation index, 16 PCs
PPM010281 PGS001925
(portability-PLR_haematocrit_perc)
PSS007855|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.13 [0.0898, 0.1698] sex, age, birth date, deprivation index, 16 PCs
PPM010282 PGS001925
(portability-PLR_haematocrit_perc)
PSS008959|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.1286 [0.0967, 0.1602] sex, age, birth date, deprivation index, 16 PCs
PPM010279 PGS001925
(portability-PLR_haematocrit_perc)
PSS008291|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.2255 [0.2015, 0.2493] sex, age, birth date, deprivation index, 16 PCs
PPM010280 PGS001925
(portability-PLR_haematocrit_perc)
PSS008068|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.2014 [0.1559, 0.2461] sex, age, birth date, deprivation index, 16 PCs
PPM010284 PGS001926
(portability-PLR_haemoglobin)
PSS009186|
European Ancestry|
4,001 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.3146 [0.2864, 0.3423] sex, age, birth date, deprivation index, 16 PCs
PPM010285 PGS001926
(portability-PLR_haemoglobin)
PSS008740|
European Ancestry|
6,436 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.2911 [0.2686, 0.3134] sex, age, birth date, deprivation index, 16 PCs
PPM010286 PGS001926
(portability-PLR_haemoglobin)
PSS008514|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.2493 [0.1938, 0.3031] sex, age, birth date, deprivation index, 16 PCs
PPM010287 PGS001926
(portability-PLR_haemoglobin)
PSS008292|
South Asian Ancestry|
6,077 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.2104 [0.1863, 0.2344] sex, age, birth date, deprivation index, 16 PCs
PPM010288 PGS001926
(portability-PLR_haemoglobin)
PSS008069|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.208 [0.1627, 0.2525] sex, age, birth date, deprivation index, 16 PCs
PPM010289 PGS001926
(portability-PLR_haemoglobin)
PSS007856|
African Ancestry|
2,340 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.1224 [0.0822, 0.1623] sex, age, birth date, deprivation index, 16 PCs
PPM010290 PGS001926
(portability-PLR_haemoglobin)
PSS008960|
African Ancestry|
3,709 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.1163 [0.0844, 0.148] sex, age, birth date, deprivation index, 16 PCs
PPM010283 PGS001926
(portability-PLR_haemoglobin)
PSS009412|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.3431 [0.3306, 0.3555] sex, age, birth date, deprivation index, 16 PCs
PPM010315 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS009417|
European Ancestry|
19,121 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3146 [0.3017, 0.3273] sex, age, birth date, deprivation index, 16 PCs
PPM010316 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS009191|
European Ancestry|
3,924 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3213 [0.2928, 0.3491] sex, age, birth date, deprivation index, 16 PCs
PPM010317 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008745|
European Ancestry|
6,298 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3224 [0.3, 0.3444] sex, age, birth date, deprivation index, 16 PCs
PPM010318 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008519|
Greater Middle Eastern Ancestry|
1,127 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2696 [0.214, 0.3234] sex, age, birth date, deprivation index, 16 PCs
PPM010319 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008297|
South Asian Ancestry|
5,937 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2631 [0.2392, 0.2867] sex, age, birth date, deprivation index, 16 PCs
PPM010320 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008074|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2154 [0.1696, 0.2602] sex, age, birth date, deprivation index, 16 PCs
PPM010321 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS007861|
African Ancestry|
2,294 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.1811 [0.141, 0.2205] sex, age, birth date, deprivation index, 16 PCs
PPM010322 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008965|
African Ancestry|
3,602 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.1665 [0.1345, 0.1982] sex, age, birth date, deprivation index, 16 PCs
PPM010467 PGS001949
(portability-PLR_log_eosinophil_perc)
PSS009442|
European Ancestry|
11,529 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.2072 [0.1897, 0.2246] sex, age, birth date, deprivation index, 16 PCs
PPM010468 PGS001949
(portability-PLR_log_eosinophil_perc)
PSS009216|
European Ancestry|
2,282 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.2342 [0.1949, 0.2728] sex, age, birth date, deprivation index, 16 PCs
PPM010469 PGS001949
(portability-PLR_log_eosinophil_perc)
PSS008770|
European Ancestry|
3,365 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.1724 [0.1393, 0.2051] sex, age, birth date, deprivation index, 16 PCs
PPM010470 PGS001949
(portability-PLR_log_eosinophil_perc)
PSS008544|
Greater Middle Eastern Ancestry|
676 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.1901 [0.1152, 0.2628] sex, age, birth date, deprivation index, 16 PCs
PPM010471 PGS001949
(portability-PLR_log_eosinophil_perc)
PSS008322|
South Asian Ancestry|
4,224 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.1678 [0.1382, 0.197] sex, age, birth date, deprivation index, 16 PCs
PPM010472 PGS001949
(portability-PLR_log_eosinophil_perc)
PSS008099|
East Asian Ancestry|
983 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.1291 [0.0665, 0.1907] sex, age, birth date, deprivation index, 16 PCs
PPM010473 PGS001949
(portability-PLR_log_eosinophil_perc)
PSS007886|
African Ancestry|
1,291 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.0617 [0.0067, 0.1162] sex, age, birth date, deprivation index, 16 PCs
PPM010474 PGS001949
(portability-PLR_log_eosinophil_perc)
PSS008990|
African Ancestry|
2,100 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.0967 [0.054, 0.1391] sex, age, birth date, deprivation index, 16 PCs
PPM010500 PGS001953
(portability-PLR_log_HbA1c)
PSS009208|
European Ancestry|
3,930 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.3374 [0.3093, 0.3649] sex, age, birth date, deprivation index, 16 PCs
PPM010501 PGS001953
(portability-PLR_log_HbA1c)
PSS008762|
European Ancestry|
6,326 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.3092 [0.2867, 0.3314] sex, age, birth date, deprivation index, 16 PCs
PPM010502 PGS001953
(portability-PLR_log_HbA1c)
PSS008536|
Greater Middle Eastern Ancestry|
1,128 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.329 [0.2755, 0.3806] sex, age, birth date, deprivation index, 16 PCs
PPM010503 PGS001953
(portability-PLR_log_HbA1c)
PSS008314|
South Asian Ancestry|
5,936 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.2406 [0.2164, 0.2644] sex, age, birth date, deprivation index, 16 PCs
PPM010504 PGS001953
(portability-PLR_log_HbA1c)
PSS008091|
East Asian Ancestry|
1,731 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.2506 [0.2057, 0.2945] sex, age, birth date, deprivation index, 16 PCs
PPM010505 PGS001953
(portability-PLR_log_HbA1c)
PSS007878|
African Ancestry|
2,100 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.1217 [0.0792, 0.1639] sex, age, birth date, deprivation index, 16 PCs
PPM010506 PGS001953
(portability-PLR_log_HbA1c)
PSS008982|
African Ancestry|
2,976 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.087 [0.0511, 0.1226] sex, age, birth date, deprivation index, 16 PCs
PPM010499 PGS001953
(portability-PLR_log_HbA1c)
PSS009434|
European Ancestry|
19,060 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.3405 [0.3279, 0.353] sex, age, birth date, deprivation index, 16 PCs
PPM010548 PGS001959
(portability-PLR_log_HLR_reticulocyte)
PSS009207|
European Ancestry|
3,919 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.4054 [0.3788, 0.4313] sex, age, birth date, deprivation index, 16 PCs
PPM010549 PGS001959
(portability-PLR_log_HLR_reticulocyte)
PSS008761|
European Ancestry|
6,289 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.3962 [0.3751, 0.4169] sex, age, birth date, deprivation index, 16 PCs
PPM010550 PGS001959
(portability-PLR_log_HLR_reticulocyte)
PSS008535|
Greater Middle Eastern Ancestry|
1,124 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.3255 [0.2717, 0.3772] sex, age, birth date, deprivation index, 16 PCs
PPM010551 PGS001959
(portability-PLR_log_HLR_reticulocyte)
PSS008313|
South Asian Ancestry|
5,923 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.3191 [0.296, 0.3418] sex, age, birth date, deprivation index, 16 PCs
PPM010552 PGS001959
(portability-PLR_log_HLR_reticulocyte)
PSS008090|
East Asian Ancestry|
1,715 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.2778 [0.2333, 0.3212] sex, age, birth date, deprivation index, 16 PCs
PPM010553 PGS001959
(portability-PLR_log_HLR_reticulocyte)
PSS007877|
African Ancestry|
2,293 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.2182 [0.1787, 0.257] sex, age, birth date, deprivation index, 16 PCs
PPM010554 PGS001959
(portability-PLR_log_HLR_reticulocyte)
PSS008981|
African Ancestry|
3,600 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.2136 [0.1822, 0.2447] sex, age, birth date, deprivation index, 16 PCs
PPM010547 PGS001959
(portability-PLR_log_HLR_reticulocyte)
PSS009433|
European Ancestry|
19,088 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.4069 [0.395, 0.4186] sex, age, birth date, deprivation index, 16 PCs
PPM010571 PGS001962
(portability-PLR_log_leukocyte)
PSS009451|
European Ancestry|
19,419 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3641 [0.3518, 0.3762] sex, age, birth date, deprivation index, 16 PCs
PPM010572 PGS001962
(portability-PLR_log_leukocyte)
PSS009225|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3304 [0.3024, 0.3578] sex, age, birth date, deprivation index, 16 PCs
PPM010574 PGS001962
(portability-PLR_log_leukocyte)
PSS008553|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.2724 [0.2177, 0.3255] sex, age, birth date, deprivation index, 16 PCs
PPM010575 PGS001962
(portability-PLR_log_leukocyte)
PSS008331|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3155 [0.2926, 0.338] sex, age, birth date, deprivation index, 16 PCs
PPM010576 PGS001962
(portability-PLR_log_leukocyte)
PSS008108|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.2467 [0.2021, 0.2903] sex, age, birth date, deprivation index, 16 PCs
PPM010577 PGS001962
(portability-PLR_log_leukocyte)
PSS007895|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.1956 [0.1562, 0.2344] sex, age, birth date, deprivation index, 16 PCs
PPM010578 PGS001962
(portability-PLR_log_leukocyte)
PSS008999|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.1532 [0.1215, 0.1845] sex, age, birth date, deprivation index, 16 PCs
PPM010573 PGS001962
(portability-PLR_log_leukocyte)
PSS008779|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3374 [0.3155, 0.3589] sex, age, birth date, deprivation index, 16 PCs
PPM010595 PGS001965
(portability-PLR_log_lymphocyte)
PSS009454|
European Ancestry|
19,387 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.3636 [0.3514, 0.3758] sex, age, birth date, deprivation index, 16 PCs
PPM010596 PGS001965
(portability-PLR_log_lymphocyte)
PSS009228|
European Ancestry|
3,993 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.3456 [0.3179, 0.3727] sex, age, birth date, deprivation index, 16 PCs
PPM010597 PGS001965
(portability-PLR_log_lymphocyte)
PSS008782|
European Ancestry|
6,421 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.3335 [0.3115, 0.3551] sex, age, birth date, deprivation index, 16 PCs
PPM010598 PGS001965
(portability-PLR_log_lymphocyte)
PSS008556|
Greater Middle Eastern Ancestry|
1,150 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.3153 [0.2618, 0.3669] sex, age, birth date, deprivation index, 16 PCs
PPM010599 PGS001965
(portability-PLR_log_lymphocyte)
PSS008334|
South Asian Ancestry|
6,058 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.301 [0.2779, 0.3238] sex, age, birth date, deprivation index, 16 PCs
PPM010600 PGS001965
(portability-PLR_log_lymphocyte)
PSS008111|
East Asian Ancestry|
1,761 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.2717 [0.2277, 0.3147] sex, age, birth date, deprivation index, 16 PCs
PPM010602 PGS001965
(portability-PLR_log_lymphocyte)
PSS009002|
African Ancestry|
3,699 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.1702 [0.1386, 0.2014] sex, age, birth date, deprivation index, 16 PCs
PPM010601 PGS001965
(portability-PLR_log_lymphocyte)
PSS007898|
African Ancestry|
2,337 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.167 [0.1271, 0.2063] sex, age, birth date, deprivation index, 16 PCs
PPM010619 PGS001968
(portability-PLR_log_monocyte)
PSS009457|
European Ancestry|
19,384 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.4056 [0.3937, 0.4173] sex, age, birth date, deprivation index, 16 PCs
PPM010620 PGS001968
(portability-PLR_log_monocyte)
PSS009231|
European Ancestry|
3,993 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.3829 [0.3561, 0.4091] sex, age, birth date, deprivation index, 16 PCs
PPM010621 PGS001968
(portability-PLR_log_monocyte)
PSS008785|
European Ancestry|
6,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.3731 [0.3518, 0.394] sex, age, birth date, deprivation index, 16 PCs
PPM010622 PGS001968
(portability-PLR_log_monocyte)
PSS008559|
Greater Middle Eastern Ancestry|
1,151 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.3791 [0.328, 0.4279] sex, age, birth date, deprivation index, 16 PCs
PPM010623 PGS001968
(portability-PLR_log_monocyte)
PSS008337|
South Asian Ancestry|
6,060 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.3366 [0.314, 0.3588] sex, age, birth date, deprivation index, 16 PCs
PPM010624 PGS001968
(portability-PLR_log_monocyte)
PSS008114|
East Asian Ancestry|
1,760 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.2771 [0.2332, 0.3199] sex, age, birth date, deprivation index, 16 PCs
PPM010625 PGS001968
(portability-PLR_log_monocyte)
PSS007901|
African Ancestry|
2,336 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.2104 [0.1711, 0.249] sex, age, birth date, deprivation index, 16 PCs
PPM010626 PGS001968
(portability-PLR_log_monocyte)
PSS009005|
African Ancestry|
3,699 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.1892 [0.1579, 0.2202] sex, age, birth date, deprivation index, 16 PCs
PPM010629 PGS001969
(portability-PLR_log_neutrophil)
PSS008786|
European Ancestry|
6,419 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.3157 [0.2934, 0.3376] sex, age, birth date, deprivation index, 16 PCs
PPM010627 PGS001969
(portability-PLR_log_neutrophil)
PSS009458|
European Ancestry|
19,382 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.3305 [0.3179, 0.343] sex, age, birth date, deprivation index, 16 PCs
PPM010628 PGS001969
(portability-PLR_log_neutrophil)
PSS009232|
European Ancestry|
3,992 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.3137 [0.2853, 0.3414] sex, age, birth date, deprivation index, 16 PCs
PPM010631 PGS001969
(portability-PLR_log_neutrophil)
PSS008338|
South Asian Ancestry|
6,060 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.2983 [0.2751, 0.3211] sex, age, birth date, deprivation index, 16 PCs
PPM010632 PGS001969
(portability-PLR_log_neutrophil)
PSS008115|
East Asian Ancestry|
1,761 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.2374 [0.1926, 0.2813] sex, age, birth date, deprivation index, 16 PCs
PPM010633 PGS001969
(portability-PLR_log_neutrophil)
PSS007902|
African Ancestry|
2,336 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.1856 [0.146, 0.2246] sex, age, birth date, deprivation index, 16 PCs
PPM010634 PGS001969
(portability-PLR_log_neutrophil)
PSS009006|
African Ancestry|
3,697 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.1384 [0.1066, 0.17] sex, age, birth date, deprivation index, 16 PCs
PPM010630 PGS001969
(portability-PLR_log_neutrophil)
PSS008560|
Greater Middle Eastern Ancestry|
1,149 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.267 [0.212, 0.3204] sex, age, birth date, deprivation index, 16 PCs
PPM010635 PGS001970
(portability-PLR_log_platelet_crit)
PSS009460|
European Ancestry|
19,422 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.4299 [0.4184, 0.4413] sex, age, birth date, deprivation index, 16 PCs
PPM010636 PGS001970
(portability-PLR_log_platelet_crit)
PSS009234|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.4361 [0.4106, 0.4609] sex, age, birth date, deprivation index, 16 PCs
PPM010637 PGS001970
(portability-PLR_log_platelet_crit)
PSS008788|
European Ancestry|
6,436 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.4086 [0.388, 0.4288] sex, age, birth date, deprivation index, 16 PCs
PPM010639 PGS001970
(portability-PLR_log_platelet_crit)
PSS008340|
South Asian Ancestry|
6,076 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.3614 [0.3393, 0.3831] sex, age, birth date, deprivation index, 16 PCs
PPM010640 PGS001970
(portability-PLR_log_platelet_crit)
PSS008117|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.3104 [0.2674, 0.3523] sex, age, birth date, deprivation index, 16 PCs
PPM010641 PGS001970
(portability-PLR_log_platelet_crit)
PSS007904|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.1795 [0.1398, 0.2185] sex, age, birth date, deprivation index, 16 PCs
PPM010642 PGS001970
(portability-PLR_log_platelet_crit)
PSS009008|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.1907 [0.1594, 0.2216] sex, age, birth date, deprivation index, 16 PCs
PPM010638 PGS001970
(portability-PLR_log_platelet_crit)
PSS008562|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.3976 [0.3474, 0.4455] sex, age, birth date, deprivation index, 16 PCs
PPM010643 PGS001971
(portability-PLR_log_platelet_volume)
PSS009461|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.6032 [0.5942, 0.6121] sex, age, birth date, deprivation index, 16 PCs
PPM010644 PGS001971
(portability-PLR_log_platelet_volume)
PSS009235|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.6067 [0.5867, 0.626] sex, age, birth date, deprivation index, 16 PCs
PPM010645 PGS001971
(portability-PLR_log_platelet_volume)
PSS008789|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.5713 [0.5546, 0.5875] sex, age, birth date, deprivation index, 16 PCs
PPM010646 PGS001971
(portability-PLR_log_platelet_volume)
PSS008563|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.5283 [0.485, 0.5691] sex, age, birth date, deprivation index, 16 PCs
PPM010647 PGS001971
(portability-PLR_log_platelet_volume)
PSS008341|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.5282 [0.5098, 0.5461] sex, age, birth date, deprivation index, 16 PCs
PPM010648 PGS001971
(portability-PLR_log_platelet_volume)
PSS008118|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.4452 [0.4067, 0.4821] sex, age, birth date, deprivation index, 16 PCs
PPM010649 PGS001971
(portability-PLR_log_platelet_volume)
PSS007905|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.3353 [0.2987, 0.3709] sex, age, birth date, deprivation index, 16 PCs
PPM010650 PGS001971
(portability-PLR_log_platelet_volume)
PSS009009|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.3125 [0.2831, 0.3414] sex, age, birth date, deprivation index, 16 PCs
PPM010652 PGS001972
(portability-PLR_log_platelet_width)
PSS009236|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4717 [0.4471, 0.4955] sex, age, birth date, deprivation index, 16 PCs
PPM010653 PGS001972
(portability-PLR_log_platelet_width)
PSS008790|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4481 [0.4283, 0.4674] sex, age, birth date, deprivation index, 16 PCs
PPM010654 PGS001972
(portability-PLR_log_platelet_width)
PSS008564|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4507 [0.403, 0.4959] sex, age, birth date, deprivation index, 16 PCs
PPM010655 PGS001972
(portability-PLR_log_platelet_width)
PSS008342|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4365 [0.4158, 0.4566] sex, age, birth date, deprivation index, 16 PCs
PPM010656 PGS001972
(portability-PLR_log_platelet_width)
PSS008119|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.3413 [0.2991, 0.3821] sex, age, birth date, deprivation index, 16 PCs
PPM010657 PGS001972
(portability-PLR_log_platelet_width)
PSS007906|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.227 [0.188, 0.2652] sex, age, birth date, deprivation index, 16 PCs
PPM010658 PGS001972
(portability-PLR_log_platelet_width)
PSS009010|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.2247 [0.1938, 0.2551] sex, age, birth date, deprivation index, 16 PCs
PPM010651 PGS001972
(portability-PLR_log_platelet_width)
PSS009462|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4623 [0.4511, 0.4733] sex, age, birth date, deprivation index, 16 PCs
PPM010665 PGS001973
(portability-PLR_log_platelet)
PSS007903|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.2414 [0.2028, 0.2794] sex, age, birth date, deprivation index, 16 PCs
PPM010659 PGS001973
(portability-PLR_log_platelet)
PSS009459|
European Ancestry|
19,422 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.4839 [0.473, 0.4946] sex, age, birth date, deprivation index, 16 PCs
PPM010660 PGS001973
(portability-PLR_log_platelet)
PSS009233|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.4742 [0.4498, 0.498] sex, age, birth date, deprivation index, 16 PCs
PPM010661 PGS001973
(portability-PLR_log_platelet)
PSS008787|
European Ancestry|
6,436 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.4739 [0.4547, 0.4927] sex, age, birth date, deprivation index, 16 PCs
PPM010662 PGS001973
(portability-PLR_log_platelet)
PSS008561|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.4562 [0.4088, 0.5011] sex, age, birth date, deprivation index, 16 PCs
PPM010663 PGS001973
(portability-PLR_log_platelet)
PSS008339|
South Asian Ancestry|
6,076 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.4242 [0.4034, 0.4447] sex, age, birth date, deprivation index, 16 PCs
PPM010664 PGS001973
(portability-PLR_log_platelet)
PSS008116|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.3503 [0.3084, 0.3908] sex, age, birth date, deprivation index, 16 PCs
PPM010666 PGS001973
(portability-PLR_log_platelet)
PSS009007|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.2443 [0.2137, 0.2744] sex, age, birth date, deprivation index, 16 PCs
PPM010683 PGS001976
(portability-PLR_log_reticulocyte)
PSS009465|
European Ancestry|
19,117 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.3967 [0.3847, 0.4086] sex, age, birth date, deprivation index, 16 PCs
PPM010684 PGS001976
(portability-PLR_log_reticulocyte)
PSS009239|
European Ancestry|
3,923 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.3757 [0.3485, 0.4024] sex, age, birth date, deprivation index, 16 PCs
PPM010685 PGS001976
(portability-PLR_log_reticulocyte)
PSS008793|
European Ancestry|
6,297 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.3753 [0.3538, 0.3963] sex, age, birth date, deprivation index, 16 PCs
PPM010686 PGS001976
(portability-PLR_log_reticulocyte)
PSS008567|
Greater Middle Eastern Ancestry|
1,127 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.3116 [0.2574, 0.3638] sex, age, birth date, deprivation index, 16 PCs
PPM010688 PGS001976
(portability-PLR_log_reticulocyte)
PSS008122|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.2708 [0.2261, 0.3142] sex, age, birth date, deprivation index, 16 PCs
PPM010690 PGS001976
(portability-PLR_log_reticulocyte)
PSS009013|
African Ancestry|
3,602 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.1736 [0.1416, 0.2052] sex, age, birth date, deprivation index, 16 PCs
PPM010687 PGS001976
(portability-PLR_log_reticulocyte)
PSS008345|
South Asian Ancestry|
5,935 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.2981 [0.2747, 0.3211] sex, age, birth date, deprivation index, 16 PCs
PPM010689 PGS001976
(portability-PLR_log_reticulocyte)
PSS007909|
African Ancestry|
2,294 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.1931 [0.1532, 0.2323] sex, age, birth date, deprivation index, 16 PCs
PPM010763 PGS001986
(portability-PLR_lymphocyte_perc)
PSS009473|
European Ancestry|
19,383 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.314 [0.3012, 0.3266] sex, age, birth date, deprivation index, 16 PCs
PPM010764 PGS001986
(portability-PLR_lymphocyte_perc)
PSS009247|
European Ancestry|
3,992 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2972 [0.2686, 0.3253] sex, age, birth date, deprivation index, 16 PCs
PPM010765 PGS001986
(portability-PLR_lymphocyte_perc)
PSS008801|
European Ancestry|
6,417 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.3022 [0.2798, 0.3243] sex, age, birth date, deprivation index, 16 PCs
PPM010766 PGS001986
(portability-PLR_lymphocyte_perc)
PSS008575|
Greater Middle Eastern Ancestry|
1,150 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2825 [0.228, 0.3353] sex, age, birth date, deprivation index, 16 PCs
PPM010767 PGS001986
(portability-PLR_lymphocyte_perc)
PSS008353|
South Asian Ancestry|
6,056 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2722 [0.2487, 0.2954] sex, age, birth date, deprivation index, 16 PCs
PPM010768 PGS001986
(portability-PLR_lymphocyte_perc)
PSS008130|
East Asian Ancestry|
1,761 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2475 [0.2028, 0.291] sex, age, birth date, deprivation index, 16 PCs
PPM010769 PGS001986
(portability-PLR_lymphocyte_perc)
PSS007917|
African Ancestry|
2,337 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.1708 [0.131, 0.21] sex, age, birth date, deprivation index, 16 PCs
PPM010770 PGS001986
(portability-PLR_lymphocyte_perc)
PSS009021|
African Ancestry|
3,695 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.1726 [0.1411, 0.2038] sex, age, birth date, deprivation index, 16 PCs
PPM010787 PGS001989
(portability-PLR_MCH)
PSS009377|
European Ancestry|
19,421 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.4309 [0.4194, 0.4423] sex, age, birth date, deprivation index, 16 PCs
PPM010788 PGS001989
(portability-PLR_MCH)
PSS009151|
European Ancestry|
4,000 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.384 [0.3572, 0.4102] sex, age, birth date, deprivation index, 16 PCs
PPM010789 PGS001989
(portability-PLR_MCH)
PSS008705|
European Ancestry|
6,435 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.317 [0.2948, 0.3388] sex, age, birth date, deprivation index, 16 PCs
PPM010790 PGS001989
(portability-PLR_MCH)
PSS008479|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.2578 [0.2026, 0.3114] sex, age, birth date, deprivation index, 16 PCs
PPM010791 PGS001989
(portability-PLR_MCH)
PSS008257|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.2698 [0.2462, 0.2929] sex, age, birth date, deprivation index, 16 PCs
PPM010792 PGS001989
(portability-PLR_MCH)
PSS008035|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.2299 [0.1849, 0.2739] sex, age, birth date, deprivation index, 16 PCs
PPM010793 PGS001989
(portability-PLR_MCH)
PSS007821|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.1586 [0.1187, 0.198] sex, age, birth date, deprivation index, 16 PCs
PPM010794 PGS001989
(portability-PLR_MCH)
PSS008925|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.1189 [0.087, 0.1506] sex, age, birth date, deprivation index, 16 PCs
PPM010795 PGS001990
(portability-PLR_MCV)
PSS009378|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.4447 [0.4333, 0.4559] sex, age, birth date, deprivation index, 16 PCs
PPM010796 PGS001990
(portability-PLR_MCV)
PSS009152|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.3969 [0.3704, 0.4228] sex, age, birth date, deprivation index, 16 PCs
PPM010797 PGS001990
(portability-PLR_MCV)
PSS008706|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.3414 [0.3196, 0.3628] sex, age, birth date, deprivation index, 16 PCs
PPM010799 PGS001990
(portability-PLR_MCV)
PSS008258|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.2987 [0.2756, 0.3214] sex, age, birth date, deprivation index, 16 PCs
PPM010800 PGS001990
(portability-PLR_MCV)
PSS008036|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.2426 [0.1979, 0.2863] sex, age, birth date, deprivation index, 16 PCs
PPM010801 PGS001990
(portability-PLR_MCV)
PSS007822|
African Ancestry|
2,342 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.2067 [0.1674, 0.2453] sex, age, birth date, deprivation index, 16 PCs
PPM010802 PGS001990
(portability-PLR_MCV)
PSS008926|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.1227 [0.0908, 0.1543] sex, age, birth date, deprivation index, 16 PCs
PPM010798 PGS001990
(portability-PLR_MCV)
PSS008480|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.2898 [0.2355, 0.3422] sex, age, birth date, deprivation index, 16 PCs
PPM010803 PGS001991
(portability-PLR_monocyte_perc)
PSS009474|
European Ancestry|
19,244 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.4126 [0.4008, 0.4243] sex, age, birth date, deprivation index, 16 PCs
PPM010804 PGS001991
(portability-PLR_monocyte_perc)
PSS009248|
European Ancestry|
3,963 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.4017 [0.3752, 0.4276] sex, age, birth date, deprivation index, 16 PCs
PPM010805 PGS001991
(portability-PLR_monocyte_perc)
PSS008802|
European Ancestry|
6,368 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.4021 [0.3813, 0.4225] sex, age, birth date, deprivation index, 16 PCs
PPM010806 PGS001991
(portability-PLR_monocyte_perc)
PSS008576|
Greater Middle Eastern Ancestry|
1,144 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.4032 [0.3531, 0.4511] sex, age, birth date, deprivation index, 16 PCs
PPM010807 PGS001991
(portability-PLR_monocyte_perc)
PSS008354|
South Asian Ancestry|
6,010 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.3324 [0.3096, 0.3547] sex, age, birth date, deprivation index, 16 PCs
PPM010808 PGS001991
(portability-PLR_monocyte_perc)
PSS008131|
East Asian Ancestry|
1,744 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.3106 [0.2673, 0.3526] sex, age, birth date, deprivation index, 16 PCs
PPM010809 PGS001991
(portability-PLR_monocyte_perc)
PSS007918|
African Ancestry|
2,298 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.184 [0.1441, 0.2234] sex, age, birth date, deprivation index, 16 PCs
PPM010810 PGS001991
(portability-PLR_monocyte_perc)
PSS009022|
African Ancestry|
3,663 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.1696 [0.1379, 0.201] sex, age, birth date, deprivation index, 16 PCs
PPM010852 PGS001997
(portability-PLR_neutrophil_perc)
PSS009254|
European Ancestry|
3,988 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2971 [0.2684, 0.3252] sex, age, birth date, deprivation index, 16 PCs
PPM010853 PGS001997
(portability-PLR_neutrophil_perc)
PSS008808|
European Ancestry|
6,413 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2972 [0.2747, 0.3194] sex, age, birth date, deprivation index, 16 PCs
PPM010854 PGS001997
(portability-PLR_neutrophil_perc)
PSS008582|
Greater Middle Eastern Ancestry|
1,147 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2921 [0.2377, 0.3446] sex, age, birth date, deprivation index, 16 PCs
PPM010855 PGS001997
(portability-PLR_neutrophil_perc)
PSS008360|
South Asian Ancestry|
6,055 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2672 [0.2436, 0.2904] sex, age, birth date, deprivation index, 16 PCs
PPM010856 PGS001997
(portability-PLR_neutrophil_perc)
PSS008137|
East Asian Ancestry|
1,760 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2332 [0.1882, 0.2771] sex, age, birth date, deprivation index, 16 PCs
PPM010857 PGS001997
(portability-PLR_neutrophil_perc)
PSS007924|
African Ancestry|
2,334 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.166 [0.1261, 0.2054] sex, age, birth date, deprivation index, 16 PCs
PPM010858 PGS001997
(portability-PLR_neutrophil_perc)
PSS009028|
African Ancestry|
3,681 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.1587 [0.1269, 0.1901] sex, age, birth date, deprivation index, 16 PCs
PPM010851 PGS001997
(portability-PLR_neutrophil_perc)
PSS009480|
European Ancestry|
19,359 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.3059 [0.293, 0.3186] sex, age, birth date, deprivation index, 16 PCs
PPM010883 PGS002001
(portability-PLR_protein)
PSS009485|
European Ancestry|
17,433 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.3216 [0.3082, 0.3348] sex, age, birth date, deprivation index, 16 PCs
PPM010884 PGS002001
(portability-PLR_protein)
PSS009259|
European Ancestry|
3,593 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.3209 [0.2911, 0.35] sex, age, birth date, deprivation index, 16 PCs
PPM010885 PGS002001
(portability-PLR_protein)
PSS008813|
European Ancestry|
5,794 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.3023 [0.2787, 0.3256] sex, age, birth date, deprivation index, 16 PCs
PPM010886 PGS002001
(portability-PLR_protein)
PSS008587|
Greater Middle Eastern Ancestry|
1,036 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.2629 [0.2047, 0.3192] sex, age, birth date, deprivation index, 16 PCs
PPM010887 PGS002001
(portability-PLR_protein)
PSS008365|
South Asian Ancestry|
5,483 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.2907 [0.2662, 0.3148] sex, age, birth date, deprivation index, 16 PCs
PPM010888 PGS002001
(portability-PLR_protein)
PSS008142|
East Asian Ancestry|
1,562 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.2431 [0.1955, 0.2895] sex, age, birth date, deprivation index, 16 PCs
PPM010889 PGS002001
(portability-PLR_protein)
PSS007929|
African Ancestry|
2,161 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.1497 [0.108, 0.1909] sex, age, birth date, deprivation index, 16 PCs
PPM010890 PGS002001
(portability-PLR_protein)
PSS009033|
African Ancestry|
3,404 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.1462 [0.113, 0.179] sex, age, birth date, deprivation index, 16 PCs
PPM010898 PGS002003
(portability-PLR_reticulocyte_volume)
PSS009487|
European Ancestry|
19,120 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3934 [0.3814, 0.4054] sex, age, birth date, deprivation index, 16 PCs
PPM010899 PGS002003
(portability-PLR_reticulocyte_volume)
PSS009261|
European Ancestry|
3,924 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3882 [0.3612, 0.4145] sex, age, birth date, deprivation index, 16 PCs
PPM010900 PGS002003
(portability-PLR_reticulocyte_volume)
PSS008815|
European Ancestry|
6,298 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3774 [0.356, 0.3984] sex, age, birth date, deprivation index, 16 PCs
PPM010901 PGS002003
(portability-PLR_reticulocyte_volume)
PSS008589|
Greater Middle Eastern Ancestry|
1,127 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3348 [0.2815, 0.3861] sex, age, birth date, deprivation index, 16 PCs
PPM010902 PGS002003
(portability-PLR_reticulocyte_volume)
PSS008367|
South Asian Ancestry|
5,935 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3217 [0.2986, 0.3443] sex, age, birth date, deprivation index, 16 PCs
PPM010903 PGS002003
(portability-PLR_reticulocyte_volume)
PSS008143|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.2638 [0.219, 0.3074] sex, age, birth date, deprivation index, 16 PCs
PPM010904 PGS002003
(portability-PLR_reticulocyte_volume)
PSS007931|
African Ancestry|
2,293 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.2125 [0.1729, 0.2514] sex, age, birth date, deprivation index, 16 PCs
PPM010905 PGS002003
(portability-PLR_reticulocyte_volume)
PSS009035|
African Ancestry|
3,602 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.1616 [0.1296, 0.1934] sex, age, birth date, deprivation index, 16 PCs
PPM010938 PGS002008
(portability-PLR_sphered_cell_volume)
PSS009493|
European Ancestry|
19,116 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.4104 [0.3985, 0.4221] sex, age, birth date, deprivation index, 16 PCs
PPM010939 PGS002008
(portability-PLR_sphered_cell_volume)
PSS009267|
European Ancestry|
3,924 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.387 [0.36, 0.4134] sex, age, birth date, deprivation index, 16 PCs
PPM010940 PGS002008
(portability-PLR_sphered_cell_volume)
PSS008821|
European Ancestry|
6,293 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.3684 [0.3468, 0.3896] sex, age, birth date, deprivation index, 16 PCs
PPM010942 PGS002008
(portability-PLR_sphered_cell_volume)
PSS008373|
South Asian Ancestry|
5,934 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.3247 [0.3018, 0.3474] sex, age, birth date, deprivation index, 16 PCs
PPM010943 PGS002008
(portability-PLR_sphered_cell_volume)
PSS008149|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.2632 [0.2185, 0.3069] sex, age, birth date, deprivation index, 16 PCs
PPM010944 PGS002008
(portability-PLR_sphered_cell_volume)
PSS007937|
African Ancestry|
2,292 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.2172 [0.1777, 0.256] sex, age, birth date, deprivation index, 16 PCs
PPM010945 PGS002008
(portability-PLR_sphered_cell_volume)
PSS009041|
African Ancestry|
3,601 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.1513 [0.1191, 0.1832] sex, age, birth date, deprivation index, 16 PCs
PPM010941 PGS002008
(portability-PLR_sphered_cell_volume)
PSS008595|
Greater Middle Eastern Ancestry|
1,126 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.361 [0.3086, 0.4112] sex, age, birth date, deprivation index, 16 PCs
PPM011832 PGS002122
(portability-ldpred2_erythrocyte_width)
PSS009174|
European Ancestry|
3,996 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.3227 [0.2946, 0.3503] sex, age, birth date, deprivation index, 16 PCs
PPM011831 PGS002122
(portability-ldpred2_erythrocyte_width)
PSS009400|
European Ancestry|
19,392 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.3341 [0.3215, 0.3465] sex, age, birth date, deprivation index, 16 PCs
PPM011833 PGS002122
(portability-ldpred2_erythrocyte_width)
PSS008728|
European Ancestry|
6,422 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.2938 [0.2713, 0.3161] sex, age, birth date, deprivation index, 16 PCs
PPM011834 PGS002122
(portability-ldpred2_erythrocyte_width)
PSS008502|
Greater Middle Eastern Ancestry|
1,144 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.2528 [0.1972, 0.3067] sex, age, birth date, deprivation index, 16 PCs
PPM011835 PGS002122
(portability-ldpred2_erythrocyte_width)
PSS008280|
South Asian Ancestry|
6,035 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.2424 [0.2185, 0.266] sex, age, birth date, deprivation index, 16 PCs
PPM011836 PGS002122
(portability-ldpred2_erythrocyte_width)
PSS008057|
East Asian Ancestry|
1,757 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.2289 [0.1838, 0.273] sex, age, birth date, deprivation index, 16 PCs
PPM011837 PGS002122
(portability-ldpred2_erythrocyte_width)
PSS007844|
African Ancestry|
2,328 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.0986 [0.058, 0.1388] sex, age, birth date, deprivation index, 16 PCs
PPM011838 PGS002122
(portability-ldpred2_erythrocyte_width)
PSS008948|
African Ancestry|
3,680 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) distribution width Partial Correlation (partial-r): 0.1434 [0.1115, 0.175] sex, age, birth date, deprivation index, 16 PCs
PPM011839 PGS002123
(portability-ldpred2_erythrocyte)
PSS009399|
European Ancestry|
19,422 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.39 [0.3781, 0.4019] sex, age, birth date, deprivation index, 16 PCs
PPM011840 PGS002123
(portability-ldpred2_erythrocyte)
PSS009173|
European Ancestry|
4,001 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.398 [0.3716, 0.4239] sex, age, birth date, deprivation index, 16 PCs
PPM011841 PGS002123
(portability-ldpred2_erythrocyte)
PSS008727|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.3326 [0.3107, 0.3542] sex, age, birth date, deprivation index, 16 PCs
PPM011842 PGS002123
(portability-ldpred2_erythrocyte)
PSS008501|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.3308 [0.2779, 0.3816] sex, age, birth date, deprivation index, 16 PCs
PPM011843 PGS002123
(portability-ldpred2_erythrocyte)
PSS008279|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.2888 [0.2656, 0.3117] sex, age, birth date, deprivation index, 16 PCs
PPM011844 PGS002123
(portability-ldpred2_erythrocyte)
PSS008056|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.271 [0.2269, 0.314] sex, age, birth date, deprivation index, 16 PCs
PPM011845 PGS002123
(portability-ldpred2_erythrocyte)
PSS007843|
African Ancestry|
2,342 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.1984 [0.159, 0.2371] sex, age, birth date, deprivation index, 16 PCs
PPM011846 PGS002123
(portability-ldpred2_erythrocyte)
PSS008947|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Red blood cell (erythrocyte) count Partial Correlation (partial-r): 0.1336 [0.1018, 0.1651] sex, age, birth date, deprivation index, 16 PCs
PPM011981 PGS002141
(portability-ldpred2_haematocrit_perc)
PSS007855|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.1376 [0.0974, 0.1772] sex, age, birth date, deprivation index, 16 PCs
PPM011975 PGS002141
(portability-ldpred2_haematocrit_perc)
PSS009411|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.3167 [0.304, 0.3293] sex, age, birth date, deprivation index, 16 PCs
PPM011976 PGS002141
(portability-ldpred2_haematocrit_perc)
PSS009185|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.3059 [0.2775, 0.3338] sex, age, birth date, deprivation index, 16 PCs
PPM011977 PGS002141
(portability-ldpred2_haematocrit_perc)
PSS008739|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.2833 [0.2607, 0.3057] sex, age, birth date, deprivation index, 16 PCs
PPM011978 PGS002141
(portability-ldpred2_haematocrit_perc)
PSS008513|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.2387 [0.183, 0.2929] sex, age, birth date, deprivation index, 16 PCs
PPM011979 PGS002141
(portability-ldpred2_haematocrit_perc)
PSS008291|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.224 [0.1999, 0.2478] sex, age, birth date, deprivation index, 16 PCs
PPM011980 PGS002141
(portability-ldpred2_haematocrit_perc)
PSS008068|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.1992 [0.1536, 0.2438] sex, age, birth date, deprivation index, 16 PCs
PPM011982 PGS002141
(portability-ldpred2_haematocrit_perc)
PSS008959|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haematocrit percentage Partial Correlation (partial-r): 0.1335 [0.1016, 0.165] sex, age, birth date, deprivation index, 16 PCs
PPM011983 PGS002142
(portability-ldpred2_haemoglobin)
PSS009412|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.3358 [0.3233, 0.3482] sex, age, birth date, deprivation index, 16 PCs
PPM011984 PGS002142
(portability-ldpred2_haemoglobin)
PSS009186|
European Ancestry|
4,001 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.3107 [0.2824, 0.3385] sex, age, birth date, deprivation index, 16 PCs
PPM011985 PGS002142
(portability-ldpred2_haemoglobin)
PSS008740|
European Ancestry|
6,436 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.2912 [0.2686, 0.3134] sex, age, birth date, deprivation index, 16 PCs
PPM011986 PGS002142
(portability-ldpred2_haemoglobin)
PSS008514|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.2407 [0.185, 0.2948] sex, age, birth date, deprivation index, 16 PCs
PPM011987 PGS002142
(portability-ldpred2_haemoglobin)
PSS008292|
South Asian Ancestry|
6,077 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.2123 [0.1881, 0.2362] sex, age, birth date, deprivation index, 16 PCs
PPM011988 PGS002142
(portability-ldpred2_haemoglobin)
PSS008069|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.1969 [0.1513, 0.2416] sex, age, birth date, deprivation index, 16 PCs
PPM011989 PGS002142
(portability-ldpred2_haemoglobin)
PSS007856|
African Ancestry|
2,340 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.1241 [0.0838, 0.164] sex, age, birth date, deprivation index, 16 PCs
PPM011990 PGS002142
(portability-ldpred2_haemoglobin)
PSS008960|
African Ancestry|
3,709 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Haemoglobin concentration Partial Correlation (partial-r): 0.1255 [0.0936, 0.1572] sex, age, birth date, deprivation index, 16 PCs
PPM012023 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS009417|
European Ancestry|
19,121 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3135 [0.3007, 0.3263] sex, age, birth date, deprivation index, 16 PCs
PPM012024 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS009191|
European Ancestry|
3,924 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3215 [0.2931, 0.3494] sex, age, birth date, deprivation index, 16 PCs
PPM012025 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008745|
European Ancestry|
6,298 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3195 [0.2971, 0.3416] sex, age, birth date, deprivation index, 16 PCs
PPM012026 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008519|
Greater Middle Eastern Ancestry|
1,127 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2889 [0.234, 0.342] sex, age, birth date, deprivation index, 16 PCs
PPM012027 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008297|
South Asian Ancestry|
5,937 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2624 [0.2385, 0.286] sex, age, birth date, deprivation index, 16 PCs
PPM012028 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008074|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2089 [0.163, 0.2539] sex, age, birth date, deprivation index, 16 PCs
PPM012029 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS007861|
African Ancestry|
2,294 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.1842 [0.1442, 0.2236] sex, age, birth date, deprivation index, 16 PCs
PPM012030 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008965|
African Ancestry|
3,602 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.174 [0.1421, 0.2056] sex, age, birth date, deprivation index, 16 PCs
PPM012184 PGS002167
(portability-ldpred2_log_eosinophil_perc)
PSS009216|
European Ancestry|
2,282 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.2199 [0.1803, 0.2587] sex, age, birth date, deprivation index, 16 PCs
PPM012185 PGS002167
(portability-ldpred2_log_eosinophil_perc)
PSS008770|
European Ancestry|
3,365 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.1751 [0.142, 0.2077] sex, age, birth date, deprivation index, 16 PCs
PPM012186 PGS002167
(portability-ldpred2_log_eosinophil_perc)
PSS008544|
Greater Middle Eastern Ancestry|
676 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.18 [0.1049, 0.253] sex, age, birth date, deprivation index, 16 PCs
PPM012187 PGS002167
(portability-ldpred2_log_eosinophil_perc)
PSS008322|
South Asian Ancestry|
4,224 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.1683 [0.1388, 0.1976] sex, age, birth date, deprivation index, 16 PCs
PPM012188 PGS002167
(portability-ldpred2_log_eosinophil_perc)
PSS008099|
East Asian Ancestry|
983 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.1159 [0.0531, 0.1778] sex, age, birth date, deprivation index, 16 PCs
PPM012189 PGS002167
(portability-ldpred2_log_eosinophil_perc)
PSS007886|
African Ancestry|
1,291 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.0644 [0.0095, 0.119] sex, age, birth date, deprivation index, 16 PCs
PPM012190 PGS002167
(portability-ldpred2_log_eosinophil_perc)
PSS008990|
African Ancestry|
2,100 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.091 [0.0482, 0.1335] sex, age, birth date, deprivation index, 16 PCs
PPM012183 PGS002167
(portability-ldpred2_log_eosinophil_perc)
PSS009442|
European Ancestry|
11,529 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Eosinophil percentage Partial Correlation (partial-r): 0.2043 [0.1867, 0.2217] sex, age, birth date, deprivation index, 16 PCs
PPM012215 PGS002171
(portability-ldpred2_log_HbA1c)
PSS009434|
European Ancestry|
19,060 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.3359 [0.3233, 0.3485] sex, age, birth date, deprivation index, 16 PCs
PPM012216 PGS002171
(portability-ldpred2_log_HbA1c)
PSS009208|
European Ancestry|
3,930 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.3366 [0.3085, 0.3641] sex, age, birth date, deprivation index, 16 PCs
PPM012217 PGS002171
(portability-ldpred2_log_HbA1c)
PSS008762|
European Ancestry|
6,326 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.3096 [0.2871, 0.3317] sex, age, birth date, deprivation index, 16 PCs
PPM012219 PGS002171
(portability-ldpred2_log_HbA1c)
PSS008314|
South Asian Ancestry|
5,936 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.2393 [0.2152, 0.2632] sex, age, birth date, deprivation index, 16 PCs
PPM012220 PGS002171
(portability-ldpred2_log_HbA1c)
PSS008091|
East Asian Ancestry|
1,731 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.2571 [0.2123, 0.3008] sex, age, birth date, deprivation index, 16 PCs
PPM012221 PGS002171
(portability-ldpred2_log_HbA1c)
PSS007878|
African Ancestry|
2,100 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.1245 [0.082, 0.1666] sex, age, birth date, deprivation index, 16 PCs
PPM012222 PGS002171
(portability-ldpred2_log_HbA1c)
PSS008982|
African Ancestry|
2,976 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.0934 [0.0575, 0.129] sex, age, birth date, deprivation index, 16 PCs
PPM012218 PGS002171
(portability-ldpred2_log_HbA1c)
PSS008536|
Greater Middle Eastern Ancestry|
1,128 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Glycated haemoglobin (HbA1c) Partial Correlation (partial-r): 0.3222 [0.2684, 0.374] sex, age, birth date, deprivation index, 16 PCs
PPM012263 PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PSS009433|
European Ancestry|
19,088 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.3974 [0.3854, 0.4093] sex, age, birth date, deprivation index, 16 PCs
PPM012264 PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PSS009207|
European Ancestry|
3,919 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.3985 [0.3718, 0.4246] sex, age, birth date, deprivation index, 16 PCs
PPM012265 PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PSS008761|
European Ancestry|
6,289 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.3888 [0.3676, 0.4096] sex, age, birth date, deprivation index, 16 PCs
PPM012266 PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PSS008535|
Greater Middle Eastern Ancestry|
1,124 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.3261 [0.2723, 0.3778] sex, age, birth date, deprivation index, 16 PCs
PPM012267 PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PSS008313|
South Asian Ancestry|
5,923 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.3041 [0.2808, 0.3271] sex, age, birth date, deprivation index, 16 PCs
PPM012268 PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PSS008090|
East Asian Ancestry|
1,715 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.2632 [0.2183, 0.307] sex, age, birth date, deprivation index, 16 PCs
PPM012269 PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PSS007877|
African Ancestry|
2,293 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.2241 [0.1847, 0.2628] sex, age, birth date, deprivation index, 16 PCs
PPM012270 PGS002177
(portability-ldpred2_log_HLR_reticulocyte)
PSS008981|
African Ancestry|
3,600 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: High light scatter reticulocyte count Partial Correlation (partial-r): 0.1964 [0.1647, 0.2277] sex, age, birth date, deprivation index, 16 PCs
PPM012287 PGS002180
(portability-ldpred2_log_leukocyte)
PSS009451|
European Ancestry|
19,419 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3596 [0.3473, 0.3718] sex, age, birth date, deprivation index, 16 PCs
PPM012288 PGS002180
(portability-ldpred2_log_leukocyte)
PSS009225|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3332 [0.3053, 0.3605] sex, age, birth date, deprivation index, 16 PCs
PPM012289 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008779|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3368 [0.3149, 0.3583] sex, age, birth date, deprivation index, 16 PCs
PPM012290 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008553|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.2706 [0.2158, 0.3237] sex, age, birth date, deprivation index, 16 PCs
PPM012291 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008331|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3147 [0.2919, 0.3372] sex, age, birth date, deprivation index, 16 PCs
PPM012292 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008108|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.2454 [0.2007, 0.289] sex, age, birth date, deprivation index, 16 PCs
PPM012293 PGS002180
(portability-ldpred2_log_leukocyte)
PSS007895|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.1863 [0.1467, 0.2253] sex, age, birth date, deprivation index, 16 PCs
PPM012294 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008999|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.1563 [0.1247, 0.1876] sex, age, birth date, deprivation index, 16 PCs
PPM012311 PGS002183
(portability-ldpred2_log_lymphocyte)
PSS009454|
European Ancestry|
19,387 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.3574 [0.3451, 0.3697] sex, age, birth date, deprivation index, 16 PCs
PPM012312 PGS002183
(portability-ldpred2_log_lymphocyte)
PSS009228|
European Ancestry|
3,993 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.3369 [0.3091, 0.3642] sex, age, birth date, deprivation index, 16 PCs
PPM012314 PGS002183
(portability-ldpred2_log_lymphocyte)
PSS008556|
Greater Middle Eastern Ancestry|
1,150 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.2968 [0.2427, 0.3491] sex, age, birth date, deprivation index, 16 PCs
PPM012315 PGS002183
(portability-ldpred2_log_lymphocyte)
PSS008334|
South Asian Ancestry|
6,058 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.2945 [0.2713, 0.3173] sex, age, birth date, deprivation index, 16 PCs
PPM012316 PGS002183
(portability-ldpred2_log_lymphocyte)
PSS008111|
East Asian Ancestry|
1,761 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.2745 [0.2305, 0.3174] sex, age, birth date, deprivation index, 16 PCs
PPM012317 PGS002183
(portability-ldpred2_log_lymphocyte)
PSS007898|
African Ancestry|
2,337 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.1609 [0.121, 0.2003] sex, age, birth date, deprivation index, 16 PCs
PPM012318 PGS002183
(portability-ldpred2_log_lymphocyte)
PSS009002|
African Ancestry|
3,699 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.1618 [0.1302, 0.1931] sex, age, birth date, deprivation index, 16 PCs
PPM012313 PGS002183
(portability-ldpred2_log_lymphocyte)
PSS008782|
European Ancestry|
6,421 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte count Partial Correlation (partial-r): 0.3319 [0.31, 0.3536] sex, age, birth date, deprivation index, 16 PCs
PPM012335 PGS002186
(portability-ldpred2_log_monocyte)
PSS009457|
European Ancestry|
19,384 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.4013 [0.3894, 0.4131] sex, age, birth date, deprivation index, 16 PCs
PPM012336 PGS002186
(portability-ldpred2_log_monocyte)
PSS009231|
European Ancestry|
3,993 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.3828 [0.356, 0.4091] sex, age, birth date, deprivation index, 16 PCs
PPM012338 PGS002186
(portability-ldpred2_log_monocyte)
PSS008559|
Greater Middle Eastern Ancestry|
1,151 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.3913 [0.3408, 0.4395] sex, age, birth date, deprivation index, 16 PCs
PPM012339 PGS002186
(portability-ldpred2_log_monocyte)
PSS008337|
South Asian Ancestry|
6,060 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.326 [0.3033, 0.3484] sex, age, birth date, deprivation index, 16 PCs
PPM012340 PGS002186
(portability-ldpred2_log_monocyte)
PSS008114|
East Asian Ancestry|
1,760 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.2727 [0.2287, 0.3157] sex, age, birth date, deprivation index, 16 PCs
PPM012341 PGS002186
(portability-ldpred2_log_monocyte)
PSS007901|
African Ancestry|
2,336 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.2009 [0.1615, 0.2396] sex, age, birth date, deprivation index, 16 PCs
PPM012342 PGS002186
(portability-ldpred2_log_monocyte)
PSS009005|
African Ancestry|
3,699 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.1818 [0.1503, 0.2128] sex, age, birth date, deprivation index, 16 PCs
PPM012337 PGS002186
(portability-ldpred2_log_monocyte)
PSS008785|
European Ancestry|
6,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte count Partial Correlation (partial-r): 0.3692 [0.3478, 0.3901] sex, age, birth date, deprivation index, 16 PCs
PPM012343 PGS002187
(portability-ldpred2_log_neutrophil)
PSS009458|
European Ancestry|
19,382 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.3263 [0.3137, 0.3388] sex, age, birth date, deprivation index, 16 PCs
PPM012344 PGS002187
(portability-ldpred2_log_neutrophil)
PSS009232|
European Ancestry|
3,992 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.3117 [0.2834, 0.3395] sex, age, birth date, deprivation index, 16 PCs
PPM012345 PGS002187
(portability-ldpred2_log_neutrophil)
PSS008786|
European Ancestry|
6,419 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.3147 [0.2924, 0.3366] sex, age, birth date, deprivation index, 16 PCs
PPM012346 PGS002187
(portability-ldpred2_log_neutrophil)
PSS008560|
Greater Middle Eastern Ancestry|
1,149 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.2709 [0.2159, 0.3241] sex, age, birth date, deprivation index, 16 PCs
PPM012347 PGS002187
(portability-ldpred2_log_neutrophil)
PSS008338|
South Asian Ancestry|
6,060 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.3015 [0.2784, 0.3242] sex, age, birth date, deprivation index, 16 PCs
PPM012348 PGS002187
(portability-ldpred2_log_neutrophil)
PSS008115|
East Asian Ancestry|
1,761 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.2401 [0.1953, 0.2839] sex, age, birth date, deprivation index, 16 PCs
PPM012349 PGS002187
(portability-ldpred2_log_neutrophil)
PSS007902|
African Ancestry|
2,336 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.1884 [0.1488, 0.2274] sex, age, birth date, deprivation index, 16 PCs
PPM012350 PGS002187
(portability-ldpred2_log_neutrophil)
PSS009006|
African Ancestry|
3,697 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil count Partial Correlation (partial-r): 0.1552 [0.1235, 0.1866] sex, age, birth date, deprivation index, 16 PCs
PPM012351 PGS002188
(portability-ldpred2_log_platelet_crit)
PSS009460|
European Ancestry|
19,422 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.4219 [0.4103, 0.4334] sex, age, birth date, deprivation index, 16 PCs
PPM012352 PGS002188
(portability-ldpred2_log_platelet_crit)
PSS009234|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.4319 [0.4063, 0.4568] sex, age, birth date, deprivation index, 16 PCs
PPM012353 PGS002188
(portability-ldpred2_log_platelet_crit)
PSS008788|
European Ancestry|
6,436 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.4045 [0.3839, 0.4248] sex, age, birth date, deprivation index, 16 PCs
PPM012355 PGS002188
(portability-ldpred2_log_platelet_crit)
PSS008340|
South Asian Ancestry|
6,076 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.357 [0.3348, 0.3788] sex, age, birth date, deprivation index, 16 PCs
PPM012356 PGS002188
(portability-ldpred2_log_platelet_crit)
PSS008117|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.3181 [0.2753, 0.3597] sex, age, birth date, deprivation index, 16 PCs
PPM012357 PGS002188
(portability-ldpred2_log_platelet_crit)
PSS007904|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.2035 [0.1642, 0.2422] sex, age, birth date, deprivation index, 16 PCs
PPM012358 PGS002188
(portability-ldpred2_log_platelet_crit)
PSS009008|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.1849 [0.1536, 0.2159] sex, age, birth date, deprivation index, 16 PCs
PPM012354 PGS002188
(portability-ldpred2_log_platelet_crit)
PSS008562|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet crit Partial Correlation (partial-r): 0.3907 [0.3402, 0.439] sex, age, birth date, deprivation index, 16 PCs
PPM012359 PGS002189
(portability-ldpred2_log_platelet_volume)
PSS009461|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.5923 [0.5831, 0.6013] sex, age, birth date, deprivation index, 16 PCs
PPM012360 PGS002189
(portability-ldpred2_log_platelet_volume)
PSS009235|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.5914 [0.5709, 0.6113] sex, age, birth date, deprivation index, 16 PCs
PPM012361 PGS002189
(portability-ldpred2_log_platelet_volume)
PSS008789|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.5603 [0.5433, 0.5769] sex, age, birth date, deprivation index, 16 PCs
PPM012362 PGS002189
(portability-ldpred2_log_platelet_volume)
PSS008563|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.5196 [0.4758, 0.5609] sex, age, birth date, deprivation index, 16 PCs
PPM012363 PGS002189
(portability-ldpred2_log_platelet_volume)
PSS008341|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.5166 [0.4979, 0.5348] sex, age, birth date, deprivation index, 16 PCs
PPM012364 PGS002189
(portability-ldpred2_log_platelet_volume)
PSS008118|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.444 [0.4054, 0.4809] sex, age, birth date, deprivation index, 16 PCs
PPM012365 PGS002189
(portability-ldpred2_log_platelet_volume)
PSS007905|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.3231 [0.2862, 0.3591] sex, age, birth date, deprivation index, 16 PCs
PPM012366 PGS002189
(portability-ldpred2_log_platelet_volume)
PSS009009|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean platelet (thrombocyte) volume Partial Correlation (partial-r): 0.2907 [0.2609, 0.3199] sex, age, birth date, deprivation index, 16 PCs
PPM012368 PGS002190
(portability-ldpred2_log_platelet_width)
PSS009236|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4638 [0.439, 0.4878] sex, age, birth date, deprivation index, 16 PCs
PPM012369 PGS002190
(portability-ldpred2_log_platelet_width)
PSS008790|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4435 [0.4237, 0.463] sex, age, birth date, deprivation index, 16 PCs
PPM012370 PGS002190
(portability-ldpred2_log_platelet_width)
PSS008564|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.433 [0.3844, 0.4791] sex, age, birth date, deprivation index, 16 PCs
PPM012371 PGS002190
(portability-ldpred2_log_platelet_width)
PSS008342|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4272 [0.4064, 0.4476] sex, age, birth date, deprivation index, 16 PCs
PPM012372 PGS002190
(portability-ldpred2_log_platelet_width)
PSS008119|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.3414 [0.2992, 0.3822] sex, age, birth date, deprivation index, 16 PCs
PPM012373 PGS002190
(portability-ldpred2_log_platelet_width)
PSS007906|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.2196 [0.1806, 0.258] sex, age, birth date, deprivation index, 16 PCs
PPM012374 PGS002190
(portability-ldpred2_log_platelet_width)
PSS009010|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.2233 [0.1924, 0.2538] sex, age, birth date, deprivation index, 16 PCs
PPM012367 PGS002190
(portability-ldpred2_log_platelet_width)
PSS009462|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet distribution width Partial Correlation (partial-r): 0.4539 [0.4426, 0.465] sex, age, birth date, deprivation index, 16 PCs
PPM012375 PGS002191
(portability-ldpred2_log_platelet)
PSS009459|
European Ancestry|
19,422 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.4757 [0.4648, 0.4866] sex, age, birth date, deprivation index, 16 PCs
PPM012376 PGS002191
(portability-ldpred2_log_platelet)
PSS009233|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.469 [0.4444, 0.4929] sex, age, birth date, deprivation index, 16 PCs
PPM012377 PGS002191
(portability-ldpred2_log_platelet)
PSS008787|
European Ancestry|
6,436 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.468 [0.4487, 0.4869] sex, age, birth date, deprivation index, 16 PCs
PPM012378 PGS002191
(portability-ldpred2_log_platelet)
PSS008561|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.4476 [0.3998, 0.493] sex, age, birth date, deprivation index, 16 PCs
PPM012379 PGS002191
(portability-ldpred2_log_platelet)
PSS008339|
South Asian Ancestry|
6,076 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.4155 [0.3944, 0.4361] sex, age, birth date, deprivation index, 16 PCs
PPM012380 PGS002191
(portability-ldpred2_log_platelet)
PSS008116|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.3472 [0.3052, 0.3878] sex, age, birth date, deprivation index, 16 PCs
PPM012381 PGS002191
(portability-ldpred2_log_platelet)
PSS007903|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.2554 [0.217, 0.293] sex, age, birth date, deprivation index, 16 PCs
PPM012382 PGS002191
(portability-ldpred2_log_platelet)
PSS009007|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Platelet count Partial Correlation (partial-r): 0.2355 [0.2048, 0.2658] sex, age, birth date, deprivation index, 16 PCs
PPM012399 PGS002194
(portability-ldpred2_log_reticulocyte)
PSS009465|
European Ancestry|
19,117 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.391 [0.3789, 0.403] sex, age, birth date, deprivation index, 16 PCs
PPM012400 PGS002194
(portability-ldpred2_log_reticulocyte)
PSS009239|
European Ancestry|
3,923 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.3672 [0.3398, 0.3941] sex, age, birth date, deprivation index, 16 PCs
PPM012401 PGS002194
(portability-ldpred2_log_reticulocyte)
PSS008793|
European Ancestry|
6,297 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.3718 [0.3503, 0.393] sex, age, birth date, deprivation index, 16 PCs
PPM012402 PGS002194
(portability-ldpred2_log_reticulocyte)
PSS008567|
Greater Middle Eastern Ancestry|
1,127 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.3104 [0.2562, 0.3627] sex, age, birth date, deprivation index, 16 PCs
PPM012403 PGS002194
(portability-ldpred2_log_reticulocyte)
PSS008345|
South Asian Ancestry|
5,935 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.2814 [0.2577, 0.3047] sex, age, birth date, deprivation index, 16 PCs
PPM012404 PGS002194
(portability-ldpred2_log_reticulocyte)
PSS008122|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.2574 [0.2125, 0.3013] sex, age, birth date, deprivation index, 16 PCs
PPM012405 PGS002194
(portability-ldpred2_log_reticulocyte)
PSS007909|
African Ancestry|
2,294 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.21 [0.1704, 0.249] sex, age, birth date, deprivation index, 16 PCs
PPM012406 PGS002194
(portability-ldpred2_log_reticulocyte)
PSS009013|
African Ancestry|
3,602 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Reticulocyte count Partial Correlation (partial-r): 0.1782 [0.1463, 0.2097] sex, age, birth date, deprivation index, 16 PCs
PPM012471 PGS002203
(portability-ldpred2_lymphocyte_perc)
PSS009473|
European Ancestry|
19,383 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.3116 [0.2989, 0.3243] sex, age, birth date, deprivation index, 16 PCs
PPM012472 PGS002203
(portability-ldpred2_lymphocyte_perc)
PSS009247|
European Ancestry|
3,992 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2932 [0.2645, 0.3213] sex, age, birth date, deprivation index, 16 PCs
PPM012473 PGS002203
(portability-ldpred2_lymphocyte_perc)
PSS008801|
European Ancestry|
6,417 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2976 [0.2751, 0.3198] sex, age, birth date, deprivation index, 16 PCs
PPM012474 PGS002203
(portability-ldpred2_lymphocyte_perc)
PSS008575|
Greater Middle Eastern Ancestry|
1,150 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2842 [0.2297, 0.3369] sex, age, birth date, deprivation index, 16 PCs
PPM012475 PGS002203
(portability-ldpred2_lymphocyte_perc)
PSS008353|
South Asian Ancestry|
6,056 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2664 [0.2428, 0.2897] sex, age, birth date, deprivation index, 16 PCs
PPM012476 PGS002203
(portability-ldpred2_lymphocyte_perc)
PSS008130|
East Asian Ancestry|
1,761 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.2567 [0.2122, 0.3] sex, age, birth date, deprivation index, 16 PCs
PPM012477 PGS002203
(portability-ldpred2_lymphocyte_perc)
PSS007917|
African Ancestry|
2,337 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.1725 [0.1327, 0.2117] sex, age, birth date, deprivation index, 16 PCs
PPM012478 PGS002203
(portability-ldpred2_lymphocyte_perc)
PSS009021|
African Ancestry|
3,695 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Lymphocyte percentage Partial Correlation (partial-r): 0.164 [0.1324, 0.1953] sex, age, birth date, deprivation index, 16 PCs
PPM012495 PGS002206
(portability-ldpred2_MCH)
PSS009377|
European Ancestry|
19,421 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.427 [0.4154, 0.4384] sex, age, birth date, deprivation index, 16 PCs
PPM012496 PGS002206
(portability-ldpred2_MCH)
PSS009151|
European Ancestry|
4,000 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.3723 [0.3453, 0.3988] sex, age, birth date, deprivation index, 16 PCs
PPM012497 PGS002206
(portability-ldpred2_MCH)
PSS008705|
European Ancestry|
6,435 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.3119 [0.2897, 0.3338] sex, age, birth date, deprivation index, 16 PCs
PPM012498 PGS002206
(portability-ldpred2_MCH)
PSS008479|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.2511 [0.1957, 0.3049] sex, age, birth date, deprivation index, 16 PCs
PPM012499 PGS002206
(portability-ldpred2_MCH)
PSS008257|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.2691 [0.2455, 0.2923] sex, age, birth date, deprivation index, 16 PCs
PPM012500 PGS002206
(portability-ldpred2_MCH)
PSS008035|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.2349 [0.19, 0.2787] sex, age, birth date, deprivation index, 16 PCs
PPM012501 PGS002206
(portability-ldpred2_MCH)
PSS007821|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.1483 [0.1083, 0.1879] sex, age, birth date, deprivation index, 16 PCs
PPM012502 PGS002206
(portability-ldpred2_MCH)
PSS008925|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular haemoglobin Partial Correlation (partial-r): 0.1335 [0.1017, 0.1651] sex, age, birth date, deprivation index, 16 PCs
PPM012503 PGS002207
(portability-ldpred2_MCV)
PSS009378|
European Ancestry|
19,423 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.4393 [0.4279, 0.4506] sex, age, birth date, deprivation index, 16 PCs
PPM012504 PGS002207
(portability-ldpred2_MCV)
PSS009152|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.3883 [0.3616, 0.4144] sex, age, birth date, deprivation index, 16 PCs
PPM012506 PGS002207
(portability-ldpred2_MCV)
PSS008480|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.2809 [0.2264, 0.3337] sex, age, birth date, deprivation index, 16 PCs
PPM012507 PGS002207
(portability-ldpred2_MCV)
PSS008258|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.2928 [0.2696, 0.3156] sex, age, birth date, deprivation index, 16 PCs
PPM012508 PGS002207
(portability-ldpred2_MCV)
PSS008036|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.2554 [0.211, 0.2988] sex, age, birth date, deprivation index, 16 PCs
PPM012509 PGS002207
(portability-ldpred2_MCV)
PSS007822|
African Ancestry|
2,342 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.2029 [0.1636, 0.2416] sex, age, birth date, deprivation index, 16 PCs
PPM012505 PGS002207
(portability-ldpred2_MCV)
PSS008706|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.3311 [0.3091, 0.3527] sex, age, birth date, deprivation index, 16 PCs
PPM012510 PGS002207
(portability-ldpred2_MCV)
PSS008926|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean corpuscular volume Partial Correlation (partial-r): 0.139 [0.1072, 0.1705] sex, age, birth date, deprivation index, 16 PCs
PPM012511 PGS002208
(portability-ldpred2_monocyte_perc)
PSS009474|
European Ancestry|
19,244 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.4079 [0.396, 0.4196] sex, age, birth date, deprivation index, 16 PCs
PPM012512 PGS002208
(portability-ldpred2_monocyte_perc)
PSS009248|
European Ancestry|
3,963 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.3935 [0.3668, 0.4196] sex, age, birth date, deprivation index, 16 PCs
PPM012513 PGS002208
(portability-ldpred2_monocyte_perc)
PSS008802|
European Ancestry|
6,368 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.3978 [0.3769, 0.4183] sex, age, birth date, deprivation index, 16 PCs
PPM012514 PGS002208
(portability-ldpred2_monocyte_perc)
PSS008576|
Greater Middle Eastern Ancestry|
1,144 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.4047 [0.3546, 0.4524] sex, age, birth date, deprivation index, 16 PCs
PPM012516 PGS002208
(portability-ldpred2_monocyte_perc)
PSS008131|
East Asian Ancestry|
1,744 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.3023 [0.2587, 0.3445] sex, age, birth date, deprivation index, 16 PCs
PPM012517 PGS002208
(portability-ldpred2_monocyte_perc)
PSS007918|
African Ancestry|
2,298 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.1887 [0.1488, 0.228] sex, age, birth date, deprivation index, 16 PCs
PPM012518 PGS002208
(portability-ldpred2_monocyte_perc)
PSS009022|
African Ancestry|
3,663 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.1635 [0.1317, 0.1949] sex, age, birth date, deprivation index, 16 PCs
PPM012515 PGS002208
(portability-ldpred2_monocyte_perc)
PSS008354|
South Asian Ancestry|
6,010 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Monocyte percentage Partial Correlation (partial-r): 0.3313 [0.3085, 0.3536] sex, age, birth date, deprivation index, 16 PCs
PPM012559 PGS002214
(portability-ldpred2_neutrophil_perc)
PSS009480|
European Ancestry|
19,359 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.3042 [0.2913, 0.3169] sex, age, birth date, deprivation index, 16 PCs
PPM012560 PGS002214
(portability-ldpred2_neutrophil_perc)
PSS009254|
European Ancestry|
3,988 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2993 [0.2707, 0.3274] sex, age, birth date, deprivation index, 16 PCs
PPM012561 PGS002214
(portability-ldpred2_neutrophil_perc)
PSS008808|
European Ancestry|
6,413 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2906 [0.268, 0.3129] sex, age, birth date, deprivation index, 16 PCs
PPM012562 PGS002214
(portability-ldpred2_neutrophil_perc)
PSS008582|
Greater Middle Eastern Ancestry|
1,147 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2984 [0.2443, 0.3507] sex, age, birth date, deprivation index, 16 PCs
PPM012563 PGS002214
(portability-ldpred2_neutrophil_perc)
PSS008360|
South Asian Ancestry|
6,055 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2641 [0.2405, 0.2874] sex, age, birth date, deprivation index, 16 PCs
PPM012564 PGS002214
(portability-ldpred2_neutrophil_perc)
PSS008137|
East Asian Ancestry|
1,760 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.2471 [0.2025, 0.2907] sex, age, birth date, deprivation index, 16 PCs
PPM012565 PGS002214
(portability-ldpred2_neutrophil_perc)
PSS007924|
African Ancestry|
2,334 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.1602 [0.1202, 0.1996] sex, age, birth date, deprivation index, 16 PCs
PPM012566 PGS002214
(portability-ldpred2_neutrophil_perc)
PSS009028|
African Ancestry|
3,681 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Neutrophil percentage Partial Correlation (partial-r): 0.1568 [0.125, 0.1882] sex, age, birth date, deprivation index, 16 PCs
PPM012599 PGS002219
(portability-ldpred2_protein)
PSS009485|
European Ancestry|
17,433 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.3191 [0.3057, 0.3324] sex, age, birth date, deprivation index, 16 PCs
PPM012600 PGS002219
(portability-ldpred2_protein)
PSS009259|
European Ancestry|
3,593 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.3196 [0.2899, 0.3488] sex, age, birth date, deprivation index, 16 PCs
PPM012601 PGS002219
(portability-ldpred2_protein)
PSS008813|
European Ancestry|
5,794 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.2989 [0.2752, 0.3222] sex, age, birth date, deprivation index, 16 PCs
PPM012602 PGS002219
(portability-ldpred2_protein)
PSS008587|
Greater Middle Eastern Ancestry|
1,036 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.243 [0.1842, 0.3] sex, age, birth date, deprivation index, 16 PCs
PPM012603 PGS002219
(portability-ldpred2_protein)
PSS008365|
South Asian Ancestry|
5,483 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.2818 [0.2572, 0.306] sex, age, birth date, deprivation index, 16 PCs
PPM012604 PGS002219
(portability-ldpred2_protein)
PSS008142|
East Asian Ancestry|
1,562 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.244 [0.1965, 0.2904] sex, age, birth date, deprivation index, 16 PCs
PPM012606 PGS002219
(portability-ldpred2_protein)
PSS009033|
African Ancestry|
3,404 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.138 [0.1048, 0.1709] sex, age, birth date, deprivation index, 16 PCs
PPM012605 PGS002219
(portability-ldpred2_protein)
PSS007929|
African Ancestry|
2,161 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Total protein Partial Correlation (partial-r): 0.1313 [0.0894, 0.1727] sex, age, birth date, deprivation index, 16 PCs
PPM012614 PGS002221
(portability-ldpred2_reticulocyte_volume)
PSS009487|
European Ancestry|
19,120 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3894 [0.3773, 0.4014] sex, age, birth date, deprivation index, 16 PCs
PPM012615 PGS002221
(portability-ldpred2_reticulocyte_volume)
PSS009261|
European Ancestry|
3,924 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3877 [0.3608, 0.4141] sex, age, birth date, deprivation index, 16 PCs
PPM012616 PGS002221
(portability-ldpred2_reticulocyte_volume)
PSS008815|
European Ancestry|
6,298 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3736 [0.3521, 0.3947] sex, age, birth date, deprivation index, 16 PCs
PPM012617 PGS002221
(portability-ldpred2_reticulocyte_volume)
PSS008589|
Greater Middle Eastern Ancestry|
1,127 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3308 [0.2773, 0.3823] sex, age, birth date, deprivation index, 16 PCs
PPM012618 PGS002221
(portability-ldpred2_reticulocyte_volume)
PSS008367|
South Asian Ancestry|
5,935 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.3152 [0.2921, 0.338] sex, age, birth date, deprivation index, 16 PCs
PPM012619 PGS002221
(portability-ldpred2_reticulocyte_volume)
PSS008143|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.2541 [0.2091, 0.298] sex, age, birth date, deprivation index, 16 PCs
PPM012620 PGS002221
(portability-ldpred2_reticulocyte_volume)
PSS007931|
African Ancestry|
2,293 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.2118 [0.1722, 0.2507] sex, age, birth date, deprivation index, 16 PCs
PPM012621 PGS002221
(portability-ldpred2_reticulocyte_volume)
PSS009035|
African Ancestry|
3,602 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean reticulocyte volume Partial Correlation (partial-r): 0.1834 [0.1516, 0.2149] sex, age, birth date, deprivation index, 16 PCs
PPM012662 PGS002227
(portability-ldpred2_sphered_cell_volume)
PSS009493|
European Ancestry|
19,116 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.404 [0.392, 0.4158] sex, age, birth date, deprivation index, 16 PCs
PPM012663 PGS002227
(portability-ldpred2_sphered_cell_volume)
PSS009267|
European Ancestry|
3,924 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.3849 [0.3579, 0.4113] sex, age, birth date, deprivation index, 16 PCs
PPM012664 PGS002227
(portability-ldpred2_sphered_cell_volume)
PSS008821|
European Ancestry|
6,293 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.364 [0.3423, 0.3853] sex, age, birth date, deprivation index, 16 PCs
PPM012665 PGS002227
(portability-ldpred2_sphered_cell_volume)
PSS008595|
Greater Middle Eastern Ancestry|
1,126 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.3564 [0.3038, 0.4068] sex, age, birth date, deprivation index, 16 PCs
PPM012666 PGS002227
(portability-ldpred2_sphered_cell_volume)
PSS008373|
South Asian Ancestry|
5,934 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.3214 [0.2984, 0.3441] sex, age, birth date, deprivation index, 16 PCs
PPM012668 PGS002227
(portability-ldpred2_sphered_cell_volume)
PSS007937|
African Ancestry|
2,292 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.2143 [0.1747, 0.2532] sex, age, birth date, deprivation index, 16 PCs
PPM012669 PGS002227
(portability-ldpred2_sphered_cell_volume)
PSS009041|
African Ancestry|
3,601 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.1551 [0.123, 0.1869] sex, age, birth date, deprivation index, 16 PCs
PPM012667 PGS002227
(portability-ldpred2_sphered_cell_volume)
PSS008149|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Mean sphered cell volume Partial Correlation (partial-r): 0.2626 [0.2178, 0.3063] sex, age, birth date, deprivation index, 16 PCs
PPM013090 PGS002325
(blood_EOSINOPHIL_COUNT.BOLT-LMM)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0299 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013139 PGS002325
(blood_EOSINOPHIL_COUNT.BOLT-LMM)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0682 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013188 PGS002325
(blood_EOSINOPHIL_COUNT.BOLT-LMM)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.1407 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013237 PGS002325
(blood_EOSINOPHIL_COUNT.BOLT-LMM)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.09 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013243 PGS002331
(biochemistry_HbA1c.BOLT-LMM)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0576 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013096 PGS002331
(biochemistry_HbA1c.BOLT-LMM)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0201 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013145 PGS002331
(biochemistry_HbA1c.BOLT-LMM)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0596 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013194 PGS002331
(biochemistry_HbA1c.BOLT-LMM)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.1142 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013147 PGS002333
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.BOLT-LMM)
PSS009776|
East Asian Ancestry|
881 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0931 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013196 PGS002333
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.BOLT-LMM)
PSS009777|
European Ancestry|
41,231 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.1501 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013098 PGS002333
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.BOLT-LMM)
PSS009775|
African Ancestry|
5,976 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0378 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013245 PGS002333
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.BOLT-LMM)
PSS009778|
South Asian Ancestry|
7,560 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0872 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013103 PGS002338
(blood_LYMPHOCYTE_COUNT.BOLT-LMM)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0305 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013152 PGS002338
(blood_LYMPHOCYTE_COUNT.BOLT-LMM)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0585 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013201 PGS002338
(blood_LYMPHOCYTE_COUNT.BOLT-LMM)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.1307 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013250 PGS002338
(blood_LYMPHOCYTE_COUNT.BOLT-LMM)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0755 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013104 PGS002339
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0196 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013153 PGS002339
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1122 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013202 PGS002339
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1998 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013251 PGS002339
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1238 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013105 PGS002340
(blood_MEAN_PLATELET_VOL.BOLT-LMM)
PSS009803|
African Ancestry|
6,153 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1049 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013154 PGS002340
(blood_MEAN_PLATELET_VOL.BOLT-LMM)
PSS009804|
East Asian Ancestry|
892 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1872 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013203 PGS002340
(blood_MEAN_PLATELET_VOL.BOLT-LMM)
PSS009805|
European Ancestry|
42,078 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.3575 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013252 PGS002340
(blood_MEAN_PLATELET_VOL.BOLT-LMM)
PSS009806|
South Asian Ancestry|
7,770 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.259 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013106 PGS002341
(blood_MONOCYTE_COUNT.BOLT-LMM)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0391 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013155 PGS002341
(blood_MONOCYTE_COUNT.BOLT-LMM)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0668 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013204 PGS002341
(blood_MONOCYTE_COUNT.BOLT-LMM)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.1716 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013253 PGS002341
(blood_MONOCYTE_COUNT.BOLT-LMM)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.1221 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013108 PGS002343
(blood_PLATELET_COUNT.BOLT-LMM)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0682 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013157 PGS002343
(blood_PLATELET_COUNT.BOLT-LMM)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0998 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013206 PGS002343
(blood_PLATELET_COUNT.BOLT-LMM)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.2489 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013255 PGS002343
(blood_PLATELET_COUNT.BOLT-LMM)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1747 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013208 PGS002345
(blood_RED_COUNT.BOLT-LMM)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.1566 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013257 PGS002345
(blood_RED_COUNT.BOLT-LMM)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0917 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013110 PGS002345
(blood_RED_COUNT.BOLT-LMM)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0248 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013159 PGS002345
(blood_RED_COUNT.BOLT-LMM)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0807 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013111 PGS002346
(blood_RBC_DISTRIB_WIDTH.BOLT-LMM)
PSS009827|
African Ancestry|
5,990 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0257 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013160 PGS002346
(blood_RBC_DISTRIB_WIDTH.BOLT-LMM)
PSS009828|
East Asian Ancestry|
888 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0933 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013209 PGS002346
(blood_RBC_DISTRIB_WIDTH.BOLT-LMM)
PSS009829|
European Ancestry|
41,837 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.1557 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013258 PGS002346
(blood_RBC_DISTRIB_WIDTH.BOLT-LMM)
PSS009830|
South Asian Ancestry|
7,623 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0998 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013122 PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0249 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013171 PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0616 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013220 PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.123 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013269 PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0945 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013276 PGS002364
(blood_EOSINOPHIL_COUNT.BOLT-LMM-BBJ)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0016 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013299 PGS002364
(blood_EOSINOPHIL_COUNT.BOLT-LMM-BBJ)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0497 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013322 PGS002364
(blood_EOSINOPHIL_COUNT.BOLT-LMM-BBJ)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0044 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013345 PGS002364
(blood_EOSINOPHIL_COUNT.BOLT-LMM-BBJ)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0111 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013279 PGS002367
(biochemistry_HbA1c.BOLT-LMM-BBJ)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013302 PGS002367
(biochemistry_HbA1c.BOLT-LMM-BBJ)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0153 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013325 PGS002367
(biochemistry_HbA1c.BOLT-LMM-BBJ)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0014 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013348 PGS002367
(biochemistry_HbA1c.BOLT-LMM-BBJ)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0018 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013351 PGS002370
(blood_LYMPHOCYTE_COUNT.BOLT-LMM-BBJ)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0045 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013282 PGS002370
(blood_LYMPHOCYTE_COUNT.BOLT-LMM-BBJ)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0008 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013328 PGS002370
(blood_LYMPHOCYTE_COUNT.BOLT-LMM-BBJ)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0034 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013305 PGS002370
(blood_LYMPHOCYTE_COUNT.BOLT-LMM-BBJ)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0363 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013283 PGS002371
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM-BBJ)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0005 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013306 PGS002371
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM-BBJ)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1055 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013329 PGS002371
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM-BBJ)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0115 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013352 PGS002371
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.BOLT-LMM-BBJ)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.01 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013284 PGS002372
(blood_MONOCYTE_COUNT.BOLT-LMM-BBJ)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0059 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013307 PGS002372
(blood_MONOCYTE_COUNT.BOLT-LMM-BBJ)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0379 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013330 PGS002372
(blood_MONOCYTE_COUNT.BOLT-LMM-BBJ)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0073 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013353 PGS002372
(blood_MONOCYTE_COUNT.BOLT-LMM-BBJ)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0068 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013285 PGS002373
(blood_PLATELET_COUNT.BOLT-LMM-BBJ)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0054 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013308 PGS002373
(blood_PLATELET_COUNT.BOLT-LMM-BBJ)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.091 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013331 PGS002373
(blood_PLATELET_COUNT.BOLT-LMM-BBJ)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0111 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013354 PGS002373
(blood_PLATELET_COUNT.BOLT-LMM-BBJ)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0186 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013286 PGS002374
(blood_RED_COUNT.BOLT-LMM-BBJ)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0026 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013309 PGS002374
(blood_RED_COUNT.BOLT-LMM-BBJ)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0611 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013332 PGS002374
(blood_RED_COUNT.BOLT-LMM-BBJ)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0146 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013355 PGS002374
(blood_RED_COUNT.BOLT-LMM-BBJ)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0119 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013315 PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0507 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013338 PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0029 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013361 PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0025 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013292 PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0018 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013378 PGS002397
(blood_EOSINOPHIL_COUNT.P+T.0.0001)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0027 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013427 PGS002397
(blood_EOSINOPHIL_COUNT.P+T.0.0001)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0358 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013476 PGS002397
(blood_EOSINOPHIL_COUNT.P+T.0.0001)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0771 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013525 PGS002397
(blood_EOSINOPHIL_COUNT.P+T.0.0001)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0491 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013384 PGS002403
(biochemistry_HbA1c.P+T.0.0001)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013433 PGS002403
(biochemistry_HbA1c.P+T.0.0001)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.024 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013482 PGS002403
(biochemistry_HbA1c.P+T.0.0001)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.033 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013531 PGS002403
(biochemistry_HbA1c.P+T.0.0001)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0108 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013435 PGS002405
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.0001)
PSS009776|
East Asian Ancestry|
881 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.055 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013484 PGS002405
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.0001)
PSS009777|
European Ancestry|
41,231 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0785 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013533 PGS002405
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.0001)
PSS009778|
South Asian Ancestry|
7,560 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.05 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013386 PGS002405
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.0001)
PSS009775|
African Ancestry|
5,976 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0037 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013391 PGS002410
(blood_LYMPHOCYTE_COUNT.P+T.0.0001)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0004 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013440 PGS002410
(blood_LYMPHOCYTE_COUNT.P+T.0.0001)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0566 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013489 PGS002410
(blood_LYMPHOCYTE_COUNT.P+T.0.0001)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0706 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013538 PGS002410
(blood_LYMPHOCYTE_COUNT.P+T.0.0001)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0387 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013392 PGS002411
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.0001)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0029 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013441 PGS002411
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.0001)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0926 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013490 PGS002411
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.0001)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1367 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013539 PGS002411
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.0001)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0845 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013393 PGS002412
(blood_MEAN_PLATELET_VOL.P+T.0.0001)
PSS009803|
African Ancestry|
6,153 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.0202 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013442 PGS002412
(blood_MEAN_PLATELET_VOL.P+T.0.0001)
PSS009804|
East Asian Ancestry|
892 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1256 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013491 PGS002412
(blood_MEAN_PLATELET_VOL.P+T.0.0001)
PSS009805|
European Ancestry|
42,078 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.2484 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013540 PGS002412
(blood_MEAN_PLATELET_VOL.P+T.0.0001)
PSS009806|
South Asian Ancestry|
7,770 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1677 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013394 PGS002413
(blood_MONOCYTE_COUNT.P+T.0.0001)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0017 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013443 PGS002413
(blood_MONOCYTE_COUNT.P+T.0.0001)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.072 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013492 PGS002413
(blood_MONOCYTE_COUNT.P+T.0.0001)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.1167 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013541 PGS002413
(blood_MONOCYTE_COUNT.P+T.0.0001)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0813 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013396 PGS002415
(blood_PLATELET_COUNT.P+T.0.0001)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013494 PGS002415
(blood_PLATELET_COUNT.P+T.0.0001)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1524 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013543 PGS002415
(blood_PLATELET_COUNT.P+T.0.0001)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0979 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013445 PGS002415
(blood_PLATELET_COUNT.P+T.0.0001)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0672 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013398 PGS002417
(blood_RED_COUNT.P+T.0.0001)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0031 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013447 PGS002417
(blood_RED_COUNT.P+T.0.0001)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0331 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013545 PGS002417
(blood_RED_COUNT.P+T.0.0001)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.037 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013496 PGS002417
(blood_RED_COUNT.P+T.0.0001)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0916 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013399 PGS002418
(blood_RBC_DISTRIB_WIDTH.P+T.0.0001)
PSS009827|
African Ancestry|
5,990 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013448 PGS002418
(blood_RBC_DISTRIB_WIDTH.P+T.0.0001)
PSS009828|
East Asian Ancestry|
888 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0576 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013497 PGS002418
(blood_RBC_DISTRIB_WIDTH.P+T.0.0001)
PSS009829|
European Ancestry|
41,837 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0994 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013546 PGS002418
(blood_RBC_DISTRIB_WIDTH.P+T.0.0001)
PSS009830|
South Asian Ancestry|
7,623 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0649 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013410 PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.004 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013459 PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0423 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013508 PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0662 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013557 PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0458 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013574 PGS002446
(blood_EOSINOPHIL_COUNT.P+T.0.001)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0015 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013623 PGS002446
(blood_EOSINOPHIL_COUNT.P+T.0.001)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0309 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013672 PGS002446
(blood_EOSINOPHIL_COUNT.P+T.0.001)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0744 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013721 PGS002446
(blood_EOSINOPHIL_COUNT.P+T.0.001)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0298 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013580 PGS002452
(biochemistry_HbA1c.P+T.0.001)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013629 PGS002452
(biochemistry_HbA1c.P+T.0.001)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0058 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013678 PGS002452
(biochemistry_HbA1c.P+T.0.001)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0272 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013727 PGS002452
(biochemistry_HbA1c.P+T.0.001)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0056 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013582 PGS002454
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.001)
PSS009775|
African Ancestry|
5,976 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0011 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013631 PGS002454
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.001)
PSS009776|
East Asian Ancestry|
881 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0141 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013680 PGS002454
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.001)
PSS009777|
European Ancestry|
41,231 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0817 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013729 PGS002454
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.001)
PSS009778|
South Asian Ancestry|
7,560 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0228 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013587 PGS002459
(blood_LYMPHOCYTE_COUNT.P+T.0.001)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0003 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013636 PGS002459
(blood_LYMPHOCYTE_COUNT.P+T.0.001)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0358 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013685 PGS002459
(blood_LYMPHOCYTE_COUNT.P+T.0.001)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.058 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013734 PGS002459
(blood_LYMPHOCYTE_COUNT.P+T.0.001)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0294 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013588 PGS002460
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.001)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0002 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013637 PGS002460
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.001)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0709 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013686 PGS002460
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.001)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1354 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013735 PGS002460
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.001)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0791 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013638 PGS002461
(blood_MEAN_PLATELET_VOL.P+T.0.001)
PSS009804|
East Asian Ancestry|
892 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1171 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013687 PGS002461
(blood_MEAN_PLATELET_VOL.P+T.0.001)
PSS009805|
European Ancestry|
42,078 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.2478 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013736 PGS002461
(blood_MEAN_PLATELET_VOL.P+T.0.001)
PSS009806|
South Asian Ancestry|
7,770 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1579 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013589 PGS002461
(blood_MEAN_PLATELET_VOL.P+T.0.001)
PSS009803|
African Ancestry|
6,153 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.0039 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013590 PGS002462
(blood_MONOCYTE_COUNT.P+T.0.001)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0011 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013639 PGS002462
(blood_MONOCYTE_COUNT.P+T.0.001)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0556 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013688 PGS002462
(blood_MONOCYTE_COUNT.P+T.0.001)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.1119 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013737 PGS002462
(blood_MONOCYTE_COUNT.P+T.0.001)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.072 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013592 PGS002464
(blood_PLATELET_COUNT.P+T.0.001)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0009 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013641 PGS002464
(blood_PLATELET_COUNT.P+T.0.001)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0596 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013690 PGS002464
(blood_PLATELET_COUNT.P+T.0.001)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1455 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013739 PGS002464
(blood_PLATELET_COUNT.P+T.0.001)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0778 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013594 PGS002466
(blood_RED_COUNT.P+T.0.001)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0006 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013643 PGS002466
(blood_RED_COUNT.P+T.0.001)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0089 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013741 PGS002466
(blood_RED_COUNT.P+T.0.001)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.027 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013692 PGS002466
(blood_RED_COUNT.P+T.0.001)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0939 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013595 PGS002467
(blood_RBC_DISTRIB_WIDTH.P+T.0.001)
PSS009827|
African Ancestry|
5,990 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013644 PGS002467
(blood_RBC_DISTRIB_WIDTH.P+T.0.001)
PSS009828|
East Asian Ancestry|
888 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0099 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013693 PGS002467
(blood_RBC_DISTRIB_WIDTH.P+T.0.001)
PSS009829|
European Ancestry|
41,837 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0856 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013742 PGS002467
(blood_RBC_DISTRIB_WIDTH.P+T.0.001)
PSS009830|
South Asian Ancestry|
7,623 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0084 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013606 PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013655 PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.036 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013704 PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.069 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013753 PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0441 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013770 PGS002495
(blood_EOSINOPHIL_COUNT.P+T.0.01)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0012 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013819 PGS002495
(blood_EOSINOPHIL_COUNT.P+T.0.01)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0108 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013868 PGS002495
(blood_EOSINOPHIL_COUNT.P+T.0.01)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.053 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013917 PGS002495
(blood_EOSINOPHIL_COUNT.P+T.0.01)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0191 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013776 PGS002501
(biochemistry_HbA1c.P+T.0.01)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0002 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013825 PGS002501
(biochemistry_HbA1c.P+T.0.01)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0071 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013874 PGS002501
(biochemistry_HbA1c.P+T.0.01)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0215 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013923 PGS002501
(biochemistry_HbA1c.P+T.0.01)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0025 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013778 PGS002503
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.01)
PSS009775|
African Ancestry|
5,976 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0055 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013876 PGS002503
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.01)
PSS009777|
European Ancestry|
41,231 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0492 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013925 PGS002503
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.01)
PSS009778|
South Asian Ancestry|
7,560 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0066 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013827 PGS002503
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.0.01)
PSS009776|
East Asian Ancestry|
881 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0057 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013881 PGS002508
(blood_LYMPHOCYTE_COUNT.P+T.0.01)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0456 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013783 PGS002508
(blood_LYMPHOCYTE_COUNT.P+T.0.01)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013832 PGS002508
(blood_LYMPHOCYTE_COUNT.P+T.0.01)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0123 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013930 PGS002508
(blood_LYMPHOCYTE_COUNT.P+T.0.01)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0138 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013784 PGS002509
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.01)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013833 PGS002509
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.01)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0213 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013882 PGS002509
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.01)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0946 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013931 PGS002509
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.0.01)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0334 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013785 PGS002510
(blood_MEAN_PLATELET_VOL.P+T.0.01)
PSS009803|
African Ancestry|
6,153 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.0014 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013834 PGS002510
(blood_MEAN_PLATELET_VOL.P+T.0.01)
PSS009804|
East Asian Ancestry|
892 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.0417 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013883 PGS002510
(blood_MEAN_PLATELET_VOL.P+T.0.01)
PSS009805|
European Ancestry|
42,078 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1998 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013932 PGS002510
(blood_MEAN_PLATELET_VOL.P+T.0.01)
PSS009806|
South Asian Ancestry|
7,770 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.0686 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013835 PGS002511
(blood_MONOCYTE_COUNT.P+T.0.01)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0163 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013884 PGS002511
(blood_MONOCYTE_COUNT.P+T.0.01)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0568 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013786 PGS002511
(blood_MONOCYTE_COUNT.P+T.0.01)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0012 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013933 PGS002511
(blood_MONOCYTE_COUNT.P+T.0.01)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0235 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013788 PGS002513
(blood_PLATELET_COUNT.P+T.0.01)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0006 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013886 PGS002513
(blood_PLATELET_COUNT.P+T.0.01)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1163 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013935 PGS002513
(blood_PLATELET_COUNT.P+T.0.01)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0301 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013837 PGS002513
(blood_PLATELET_COUNT.P+T.0.01)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0374 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013790 PGS002515
(blood_RED_COUNT.P+T.0.01)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013839 PGS002515
(blood_RED_COUNT.P+T.0.01)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0033 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013937 PGS002515
(blood_RED_COUNT.P+T.0.01)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.018 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013888 PGS002515
(blood_RED_COUNT.P+T.0.01)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0705 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013791 PGS002516
(blood_RBC_DISTRIB_WIDTH.P+T.0.01)
PSS009827|
African Ancestry|
5,990 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013840 PGS002516
(blood_RBC_DISTRIB_WIDTH.P+T.0.01)
PSS009828|
East Asian Ancestry|
888 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0008 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013889 PGS002516
(blood_RBC_DISTRIB_WIDTH.P+T.0.01)
PSS009829|
European Ancestry|
41,837 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0643 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013938 PGS002516
(blood_RBC_DISTRIB_WIDTH.P+T.0.01)
PSS009830|
South Asian Ancestry|
7,623 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0048 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013802 PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013851 PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0109 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013900 PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0384 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013949 PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0128 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013966 PGS002544
(blood_EOSINOPHIL_COUNT.P+T.1e-06)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0094 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014015 PGS002544
(blood_EOSINOPHIL_COUNT.P+T.1e-06)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0334 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014064 PGS002544
(blood_EOSINOPHIL_COUNT.P+T.1e-06)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0633 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014113 PGS002544
(blood_EOSINOPHIL_COUNT.P+T.1e-06)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0426 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013972 PGS002550
(biochemistry_HbA1c.P+T.1e-06)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014021 PGS002550
(biochemistry_HbA1c.P+T.1e-06)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0268 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014070 PGS002550
(biochemistry_HbA1c.P+T.1e-06)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0444 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014119 PGS002550
(biochemistry_HbA1c.P+T.1e-06)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0172 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013974 PGS002552
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.1e-06)
PSS009775|
African Ancestry|
5,976 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0149 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014072 PGS002552
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.1e-06)
PSS009777|
European Ancestry|
41,231 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0653 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014121 PGS002552
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.1e-06)
PSS009778|
South Asian Ancestry|
7,560 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0442 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014023 PGS002552
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.1e-06)
PSS009776|
East Asian Ancestry|
881 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0649 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013979 PGS002557
(blood_LYMPHOCYTE_COUNT.P+T.1e-06)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0087 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014028 PGS002557
(blood_LYMPHOCYTE_COUNT.P+T.1e-06)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.057 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014077 PGS002557
(blood_LYMPHOCYTE_COUNT.P+T.1e-06)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0561 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014126 PGS002557
(blood_LYMPHOCYTE_COUNT.P+T.1e-06)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0302 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013980 PGS002558
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.1e-06)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.013 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014029 PGS002558
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.1e-06)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0871 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014078 PGS002558
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.1e-06)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1257 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014127 PGS002558
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.1e-06)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0825 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013981 PGS002559
(blood_MEAN_PLATELET_VOL.P+T.1e-06)
PSS009803|
African Ancestry|
6,153 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.0539 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014030 PGS002559
(blood_MEAN_PLATELET_VOL.P+T.1e-06)
PSS009804|
East Asian Ancestry|
892 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.114 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014079 PGS002559
(blood_MEAN_PLATELET_VOL.P+T.1e-06)
PSS009805|
European Ancestry|
42,078 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.2375 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014128 PGS002559
(blood_MEAN_PLATELET_VOL.P+T.1e-06)
PSS009806|
South Asian Ancestry|
7,770 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1648 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013982 PGS002560
(blood_MONOCYTE_COUNT.P+T.1e-06)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0238 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014031 PGS002560
(blood_MONOCYTE_COUNT.P+T.1e-06)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0645 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014080 PGS002560
(blood_MONOCYTE_COUNT.P+T.1e-06)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.1053 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014129 PGS002560
(blood_MONOCYTE_COUNT.P+T.1e-06)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.077 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013984 PGS002562
(blood_PLATELET_COUNT.P+T.1e-06)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.035 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014033 PGS002562
(blood_PLATELET_COUNT.P+T.1e-06)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0664 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014131 PGS002562
(blood_PLATELET_COUNT.P+T.1e-06)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1092 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014082 PGS002562
(blood_PLATELET_COUNT.P+T.1e-06)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1496 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014035 PGS002564
(blood_RED_COUNT.P+T.1e-06)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0602 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014084 PGS002564
(blood_RED_COUNT.P+T.1e-06)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0762 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013986 PGS002564
(blood_RED_COUNT.P+T.1e-06)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0079 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014133 PGS002564
(blood_RED_COUNT.P+T.1e-06)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0496 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013987 PGS002565
(blood_RBC_DISTRIB_WIDTH.P+T.1e-06)
PSS009827|
African Ancestry|
5,990 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.014 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014036 PGS002565
(blood_RBC_DISTRIB_WIDTH.P+T.1e-06)
PSS009828|
East Asian Ancestry|
888 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0554 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014085 PGS002565
(blood_RBC_DISTRIB_WIDTH.P+T.1e-06)
PSS009829|
European Ancestry|
41,837 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0938 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014134 PGS002565
(blood_RBC_DISTRIB_WIDTH.P+T.1e-06)
PSS009830|
South Asian Ancestry|
7,623 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0644 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013998 PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0151 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014047 PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0323 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014096 PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0515 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014145 PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0369 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014162 PGS002593
(blood_EOSINOPHIL_COUNT.P+T.5e-08)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.008 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014211 PGS002593
(blood_EOSINOPHIL_COUNT.P+T.5e-08)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0318 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014260 PGS002593
(blood_EOSINOPHIL_COUNT.P+T.5e-08)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0573 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014309 PGS002593
(blood_EOSINOPHIL_COUNT.P+T.5e-08)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0387 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014168 PGS002599
(biochemistry_HbA1c.P+T.5e-08)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014217 PGS002599
(biochemistry_HbA1c.P+T.5e-08)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0234 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014266 PGS002599
(biochemistry_HbA1c.P+T.5e-08)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0488 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014315 PGS002599
(biochemistry_HbA1c.P+T.5e-08)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0179 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014219 PGS002601
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.5e-08)
PSS009776|
East Asian Ancestry|
881 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0643 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014268 PGS002601
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.5e-08)
PSS009777|
European Ancestry|
41,231 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0598 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014170 PGS002601
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.5e-08)
PSS009775|
African Ancestry|
5,976 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0141 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014317 PGS002601
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.P+T.5e-08)
PSS009778|
South Asian Ancestry|
7,560 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0413 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014175 PGS002606
(blood_LYMPHOCYTE_COUNT.P+T.5e-08)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0085 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014224 PGS002606
(blood_LYMPHOCYTE_COUNT.P+T.5e-08)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0542 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014273 PGS002606
(blood_LYMPHOCYTE_COUNT.P+T.5e-08)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0498 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014322 PGS002606
(blood_LYMPHOCYTE_COUNT.P+T.5e-08)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0265 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014176 PGS002607
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.5e-08)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0125 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014274 PGS002607
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.5e-08)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.12 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014323 PGS002607
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.5e-08)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0807 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014225 PGS002607
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.P+T.5e-08)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0847 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014177 PGS002608
(blood_MEAN_PLATELET_VOL.P+T.5e-08)
PSS009803|
African Ancestry|
6,153 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.0528 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014226 PGS002608
(blood_MEAN_PLATELET_VOL.P+T.5e-08)
PSS009804|
East Asian Ancestry|
892 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1077 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014275 PGS002608
(blood_MEAN_PLATELET_VOL.P+T.5e-08)
PSS009805|
European Ancestry|
42,078 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.2311 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014324 PGS002608
(blood_MEAN_PLATELET_VOL.P+T.5e-08)
PSS009806|
South Asian Ancestry|
7,770 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1619 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014178 PGS002609
(blood_MONOCYTE_COUNT.P+T.5e-08)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0222 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014227 PGS002609
(blood_MONOCYTE_COUNT.P+T.5e-08)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0591 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014276 PGS002609
(blood_MONOCYTE_COUNT.P+T.5e-08)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0991 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014325 PGS002609
(blood_MONOCYTE_COUNT.P+T.5e-08)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0716 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014180 PGS002611
(blood_PLATELET_COUNT.P+T.5e-08)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0343 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014229 PGS002611
(blood_PLATELET_COUNT.P+T.5e-08)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0598 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014278 PGS002611
(blood_PLATELET_COUNT.P+T.5e-08)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1408 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014327 PGS002611
(blood_PLATELET_COUNT.P+T.5e-08)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1049 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014182 PGS002613
(blood_RED_COUNT.P+T.5e-08)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0114 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014231 PGS002613
(blood_RED_COUNT.P+T.5e-08)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0594 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014280 PGS002613
(blood_RED_COUNT.P+T.5e-08)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0684 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014329 PGS002613
(blood_RED_COUNT.P+T.5e-08)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0445 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014183 PGS002614
(blood_RBC_DISTRIB_WIDTH.P+T.5e-08)
PSS009827|
African Ancestry|
5,990 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0136 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014232 PGS002614
(blood_RBC_DISTRIB_WIDTH.P+T.5e-08)
PSS009828|
East Asian Ancestry|
888 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0506 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014281 PGS002614
(blood_RBC_DISTRIB_WIDTH.P+T.5e-08)
PSS009829|
European Ancestry|
41,837 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0887 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014330 PGS002614
(blood_RBC_DISTRIB_WIDTH.P+T.5e-08)
PSS009830|
South Asian Ancestry|
7,623 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0604 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014194 PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0181 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014292 PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0445 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014341 PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.033 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014243 PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.027 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014407 PGS002642
(blood_EOSINOPHIL_COUNT.PolyFun-pred)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0799 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_EOSINOPHIL_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014358 PGS002642
(blood_EOSINOPHIL_COUNT.PolyFun-pred)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.037 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_EOSINOPHIL_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014456 PGS002642
(blood_EOSINOPHIL_COUNT.PolyFun-pred)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1552 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_EOSINOPHIL_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014505 PGS002642
(blood_EOSINOPHIL_COUNT.PolyFun-pred)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1011 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_EOSINOPHIL_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014364 PGS002648
(biochemistry_HbA1c.PolyFun-pred)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0239 age, sex, age*sex, assessment center, genotyping array, 10 PCs See biochemistry_HbA1c.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014413 PGS002648
(biochemistry_HbA1c.PolyFun-pred)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0785 age, sex, age*sex, assessment center, genotyping array, 10 PCs See biochemistry_HbA1c.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014511 PGS002648
(biochemistry_HbA1c.PolyFun-pred)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.064 age, sex, age*sex, assessment center, genotyping array, 10 PCs See biochemistry_HbA1c.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014462 PGS002648
(biochemistry_HbA1c.PolyFun-pred)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1252 age, sex, age*sex, assessment center, genotyping array, 10 PCs See biochemistry_HbA1c.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014513 PGS002650
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.PolyFun-pred)
PSS009778|
South Asian Ancestry|
7,560 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1032 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014366 PGS002650
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.PolyFun-pred)
PSS009775|
African Ancestry|
5,976 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0563 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014415 PGS002650
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.PolyFun-pred)
PSS009776|
East Asian Ancestry|
881 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1068 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014464 PGS002650
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.PolyFun-pred)
PSS009777|
European Ancestry|
41,231 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1606 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014371 PGS002655
(blood_LYMPHOCYTE_COUNT.PolyFun-pred)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0339 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_LYMPHOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014420 PGS002655
(blood_LYMPHOCYTE_COUNT.PolyFun-pred)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0735 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_LYMPHOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014469 PGS002655
(blood_LYMPHOCYTE_COUNT.PolyFun-pred)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1393 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_LYMPHOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014518 PGS002655
(blood_LYMPHOCYTE_COUNT.PolyFun-pred)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0834 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_LYMPHOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014372 PGS002656
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.PolyFun-pred)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0234 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MEAN_CORPUSCULAR_HEMOGLOBIN.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014421 PGS002656
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.PolyFun-pred)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1192 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MEAN_CORPUSCULAR_HEMOGLOBIN.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014470 PGS002656
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.PolyFun-pred)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.2162 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MEAN_CORPUSCULAR_HEMOGLOBIN.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014519 PGS002656
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.PolyFun-pred)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1375 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MEAN_CORPUSCULAR_HEMOGLOBIN.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014373 PGS002657
(blood_MEAN_PLATELET_VOL.PolyFun-pred)
PSS009803|
African Ancestry|
6,153 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1611 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MEAN_PLATELET_VOL.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014422 PGS002657
(blood_MEAN_PLATELET_VOL.PolyFun-pred)
PSS009804|
East Asian Ancestry|
892 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.2269 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MEAN_PLATELET_VOL.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014471 PGS002657
(blood_MEAN_PLATELET_VOL.PolyFun-pred)
PSS009805|
European Ancestry|
42,078 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.3972 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MEAN_PLATELET_VOL.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014520 PGS002657
(blood_MEAN_PLATELET_VOL.PolyFun-pred)
PSS009806|
South Asian Ancestry|
7,770 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.2957 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MEAN_PLATELET_VOL.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014521 PGS002658
(blood_MONOCYTE_COUNT.PolyFun-pred)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1406 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MONOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014374 PGS002658
(blood_MONOCYTE_COUNT.PolyFun-pred)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0526 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MONOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014423 PGS002658
(blood_MONOCYTE_COUNT.PolyFun-pred)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0939 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MONOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014472 PGS002658
(blood_MONOCYTE_COUNT.PolyFun-pred)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1972 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_MONOCYTE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014376 PGS002660
(blood_PLATELET_COUNT.PolyFun-pred)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1041 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_PLATELET_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014425 PGS002660
(blood_PLATELET_COUNT.PolyFun-pred)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1227 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_PLATELET_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014474 PGS002660
(blood_PLATELET_COUNT.PolyFun-pred)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.2716 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_PLATELET_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014523 PGS002660
(blood_PLATELET_COUNT.PolyFun-pred)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.2014 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_PLATELET_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014427 PGS002662
(blood_RED_COUNT.PolyFun-pred)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0976 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_RED_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014476 PGS002662
(blood_RED_COUNT.PolyFun-pred)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1679 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_RED_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014525 PGS002662
(blood_RED_COUNT.PolyFun-pred)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1044 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_RED_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014378 PGS002662
(blood_RED_COUNT.PolyFun-pred)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0299 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_RED_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014379 PGS002663
(blood_RBC_DISTRIB_WIDTH.PolyFun-pred)
PSS009827|
African Ancestry|
5,990 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0343 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_RBC_DISTRIB_WIDTH.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014428 PGS002663
(blood_RBC_DISTRIB_WIDTH.PolyFun-pred)
PSS009828|
East Asian Ancestry|
888 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1048 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_RBC_DISTRIB_WIDTH.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014477 PGS002663
(blood_RBC_DISTRIB_WIDTH.PolyFun-pred)
PSS009829|
European Ancestry|
41,837 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1682 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_RBC_DISTRIB_WIDTH.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014526 PGS002663
(blood_RBC_DISTRIB_WIDTH.PolyFun-pred)
PSS009830|
South Asian Ancestry|
7,623 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1097 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_RBC_DISTRIB_WIDTH.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014390 PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.047 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_WHITE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014439 PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0632 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_WHITE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014488 PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1299 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_WHITE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014537 PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1008 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_WHITE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014603 PGS002691
(blood_EOSINOPHIL_COUNT.SBayesR)
PSS009744|
East Asian Ancestry|
880 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0679 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014554 PGS002691
(blood_EOSINOPHIL_COUNT.SBayesR)
PSS009743|
African Ancestry|
6,017 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0323 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014652 PGS002691
(blood_EOSINOPHIL_COUNT.SBayesR)
PSS009745|
European Ancestry|
41,583 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.1288 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014701 PGS002691
(blood_EOSINOPHIL_COUNT.SBayesR)
PSS009746|
South Asian Ancestry|
7,446 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Eosinophil count Incremental R2 (full model vs. covariates alone): 0.0858 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014560 PGS002697
(biochemistry_HbA1c.SBayesR)
PSS009767|
African Ancestry|
4,803 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0181 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014609 PGS002697
(biochemistry_HbA1c.SBayesR)
PSS009768|
East Asian Ancestry|
841 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0677 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014658 PGS002697
(biochemistry_HbA1c.SBayesR)
PSS009769|
European Ancestry|
38,991 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.112 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014707 PGS002697
(biochemistry_HbA1c.SBayesR)
PSS009770|
South Asian Ancestry|
6,861 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: HbA1c Incremental R2 (full model vs. covariates alone): 0.0608 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014562 PGS002699
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.SBayesR)
PSS009775|
African Ancestry|
5,976 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0423 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014611 PGS002699
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.SBayesR)
PSS009776|
East Asian Ancestry|
881 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0835 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014660 PGS002699
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.SBayesR)
PSS009777|
European Ancestry|
41,231 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.1452 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014709 PGS002699
(blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT.SBayesR)
PSS009778|
South Asian Ancestry|
7,560 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: High Light Scatter Reticulocyte Count Incremental R2 (full model vs. covariates alone): 0.0888 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014616 PGS002704
(blood_LYMPHOCYTE_COUNT.SBayesR)
PSS009796|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0673 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014567 PGS002704
(blood_LYMPHOCYTE_COUNT.SBayesR)
PSS009795|
African Ancestry|
6,135 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0268 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014665 PGS002704
(blood_LYMPHOCYTE_COUNT.SBayesR)
PSS009797|
European Ancestry|
41,973 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.1222 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014714 PGS002704
(blood_LYMPHOCYTE_COUNT.SBayesR)
PSS009798|
South Asian Ancestry|
7,737 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Lymphocyte Count Incremental R2 (full model vs. covariates alone): 0.0722 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014568 PGS002705
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.SBayesR)
PSS009799|
African Ancestry|
5,952 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.0316 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014617 PGS002705
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.SBayesR)
PSS009800|
East Asian Ancestry|
845 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1188 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014666 PGS002705
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.SBayesR)
PSS009801|
European Ancestry|
41,826 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1825 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014715 PGS002705
(blood_MEAN_CORPUSCULAR_HEMOGLOBIN.SBayesR)
PSS009802|
South Asian Ancestry|
7,485 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Corpuscular Hemoglobin Incremental R2 (full model vs. covariates alone): 0.1216 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014569 PGS002706
(blood_MEAN_PLATELET_VOL.SBayesR)
PSS009803|
African Ancestry|
6,153 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1127 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014618 PGS002706
(blood_MEAN_PLATELET_VOL.SBayesR)
PSS009804|
East Asian Ancestry|
892 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.1723 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014667 PGS002706
(blood_MEAN_PLATELET_VOL.SBayesR)
PSS009805|
European Ancestry|
42,078 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.3475 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014716 PGS002706
(blood_MEAN_PLATELET_VOL.SBayesR)
PSS009806|
South Asian Ancestry|
7,770 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Mean Platelet Volume Incremental R2 (full model vs. covariates alone): 0.2571 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014570 PGS002707
(blood_MONOCYTE_COUNT.SBayesR)
PSS009807|
African Ancestry|
6,119 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0361 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014619 PGS002707
(blood_MONOCYTE_COUNT.SBayesR)
PSS009808|
East Asian Ancestry|
894 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.0896 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014717 PGS002707
(blood_MONOCYTE_COUNT.SBayesR)
PSS009810|
South Asian Ancestry|
7,718 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.1212 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014668 PGS002707
(blood_MONOCYTE_COUNT.SBayesR)
PSS009809|
European Ancestry|
41,863 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Monocyte Count Incremental R2 (full model vs. covariates alone): 0.1669 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014572 PGS002709
(blood_PLATELET_COUNT.SBayesR)
PSS009815|
African Ancestry|
6,143 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0667 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014621 PGS002709
(blood_PLATELET_COUNT.SBayesR)
PSS009816|
East Asian Ancestry|
895 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.0811 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014670 PGS002709
(blood_PLATELET_COUNT.SBayesR)
PSS009817|
European Ancestry|
42,007 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.24 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014719 PGS002709
(blood_PLATELET_COUNT.SBayesR)
PSS009818|
South Asian Ancestry|
7,730 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Platelet count Incremental R2 (full model vs. covariates alone): 0.1748 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014574 PGS002711
(blood_RED_COUNT.SBayesR)
PSS009823|
African Ancestry|
6,120 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.027 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014672 PGS002711
(blood_RED_COUNT.SBayesR)
PSS009825|
European Ancestry|
42,065 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.1523 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014623 PGS002711
(blood_RED_COUNT.SBayesR)
PSS009824|
East Asian Ancestry|
885 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0804 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014721 PGS002711
(blood_RED_COUNT.SBayesR)
PSS009826|
South Asian Ancestry|
7,707 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Count Incremental R2 (full model vs. covariates alone): 0.0944 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014575 PGS002712
(blood_RBC_DISTRIB_WIDTH.SBayesR)
PSS009827|
African Ancestry|
5,990 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0314 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014624 PGS002712
(blood_RBC_DISTRIB_WIDTH.SBayesR)
PSS009828|
East Asian Ancestry|
888 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0864 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014673 PGS002712
(blood_RBC_DISTRIB_WIDTH.SBayesR)
PSS009829|
European Ancestry|
41,837 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.1461 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014722 PGS002712
(blood_RBC_DISTRIB_WIDTH.SBayesR)
PSS009830|
South Asian Ancestry|
7,623 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: Red Blood Cell Distribution Width Incremental R2 (full model vs. covariates alone): 0.0986 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014586 PGS002723
(blood_WHITE_COUNT.SBayesR)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0218 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014635 PGS002723
(blood_WHITE_COUNT.SBayesR)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0624 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014684 PGS002723
(blood_WHITE_COUNT.SBayesR)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.1169 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014733 PGS002723
(blood_WHITE_COUNT.SBayesR)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0902 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM016128 PGS003330
(PRS-F8)
PSS010041|
European Ancestry|
581 individuals
PGP000395 |
Valenti L et al. JHEP Rep (2022)
Reported Trait: von Willebrand factor β: 152.57 (14.24)
PPM016129 PGS003330
(PRS-F8)
PSS010041|
European Ancestry|
581 individuals
PGP000395 |
Valenti L et al. JHEP Rep (2022)
Reported Trait: Factor VIII levels β: 92.45 (10.2)
PPM016130 PGS003330
(PRS-F8)
PSS010041|
European Ancestry|
581 individuals
PGP000395 |
Valenti L et al. JHEP Rep (2022)
Reported Trait: Factor VIII/protein ratio β: 0.88 (0.11)
PPM016176 PGS003337
(CVGRS_HbA1c)
PSS010055|
East Asian Ancestry|
22,608 individuals
PGP000405 |
Kim YJ et al. Nat Commun (2022)
Reported Trait: Hemoglobin A1c level β: 0.27528
PPM016193 PGS003337
(CVGRS_HbA1c)
PSS010055|
East Asian Ancestry|
22,608 individuals
PGP000405 |
Kim YJ et al. Nat Commun (2022)
Reported Trait: Type 2 diabetes OR: 1.35007
PPM016185 PGS003346
(ALLGRS_HbA1c)
PSS010055|
East Asian Ancestry|
22,608 individuals
PGP000405 |
Kim YJ et al. Nat Commun (2022)
Reported Trait: Hemoglobin A1c level β: 0.28295
PPM017080 PGS003425
(prscs_hemoglobin)
PSS010117|
European Ancestry|
13,780 individuals
PGP000432 |
Toivonen J et al. Vox Sanguinis (2023)
Reported Trait: Hemoglobin levels in postmenopausal females : 0.04
PPM017078 PGS003425
(prscs_hemoglobin)
PSS010118|
European Ancestry|
21,577 individuals
PGP000432 |
Toivonen J et al. Vox Sanguinis (2023)
Reported Trait: Hemoglobin levels in males : 0.07
PPM017079 PGS003425
(prscs_hemoglobin)
PSS010116|
European Ancestry|
5,403 individuals
PGP000432 |
Toivonen J et al. Vox Sanguinis (2023)
Reported Trait: Hemoglobin levels in postmenopausal females : 0.06
PPM017274 PGS003464
(LDPred2_EOS)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: 0.002 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017297 PGS003464
(LDPred2_EOS)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: 0.014 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017278 PGS003467
(LDPred2_HCT)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: -0.005 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017301 PGS003467
(LDPred2_HCT)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: 0.008 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017279 PGS003468
(LDPred2_HGB)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: -0.012 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017302 PGS003468
(LDPred2_HGB)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: 0.0 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017277 PGS003471
(LDPred2_HbA1c)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: 0.023 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017300 PGS003471
(LDPred2_HbA1c)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: 0.045 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017346 PGS003471
(LDPred2_HbA1c)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index in obsese β: 0.027 (0.017) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017366 PGS003471
(LDPred2_HbA1c)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea in obsese β: 0.056 (0.034) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017367 PGS003471
(LDPred2_HbA1c)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea in non-obsese β: 0.037 (0.034) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017395 PGS003471
(LDPred2_HbA1c)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index x obesity interaction β: 0.008 (1.008) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017347 PGS003471
(LDPred2_HbA1c)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index in non-obsese β: 0.025 (0.012) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017405 PGS003471
(LDPred2_HbA1c)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea x obesity interaction β: 1.042 (0.049) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017285 PGS003475
(LDPred2_LYM)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: 0.009 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017308 PGS003475
(LDPred2_LYM)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: 0.007 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017288 PGS003478
(LDPred2_RBC)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: -0.001 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017311 PGS003478
(LDPred2_RBC)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: 0.008 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017292 PGS003483
(LDPred2_WBC)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: -0.007 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017315 PGS003483
(LDPred2_WBC)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: -0.023 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017598 PGS003502
(cont-decay-erythrocyte)
PSS010611|
European Ancestry|
6,278 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017682 PGS003502
(cont-decay-erythrocyte)
PSS010527|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017766 PGS003502
(cont-decay-erythrocyte)
PSS010191|
European Ancestry|
2,264 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.15 sex, age, deprivation index, PC1-16
PPM017934 PGS003502
(cont-decay-erythrocyte)
PSS010359|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM018018 PGS003502
(cont-decay-erythrocyte)
PSS010275|
African Ancestry|
2,329 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018102 PGS003502
(cont-decay-erythrocyte)
PSS010695|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017430 PGS003502
(cont-decay-erythrocyte)
PSS010863|
European Ancestry|
19,416 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017514 PGS003502
(cont-decay-erythrocyte)
PSS010779|
European Ancestry|
3,990 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017850 PGS003502
(cont-decay-erythrocyte)
PSS010443|
South Asian Ancestry|
6,026 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) count partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM017431 PGS003503
(cont-decay-erythrocyte_width)
PSS010864|
European Ancestry|
19,389 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017515 PGS003503
(cont-decay-erythrocyte_width)
PSS010780|
European Ancestry|
3,985 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017599 PGS003503
(cont-decay-erythrocyte_width)
PSS010612|
European Ancestry|
6,263 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017683 PGS003503
(cont-decay-erythrocyte_width)
PSS010528|
Greater Middle Eastern Ancestry|
1,114 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM017851 PGS003503
(cont-decay-erythrocyte_width)
PSS010444|
South Asian Ancestry|
5,983 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM017935 PGS003503
(cont-decay-erythrocyte_width)
PSS010360|
East Asian Ancestry|
1,744 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM018019 PGS003503
(cont-decay-erythrocyte_width)
PSS010276|
African Ancestry|
2,315 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.01 sex, age, deprivation index, PC1-16
PPM017767 PGS003503
(cont-decay-erythrocyte_width)
PSS010192|
European Ancestry|
2,258 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM018103 PGS003503
(cont-decay-erythrocyte_width)
PSS010696|
African Ancestry|
3,651 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Red blood cell (erythrocyte) distribution width partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017439 PGS003511
(cont-decay-haematocrit_perc)
PSS010873|
European Ancestry|
19,418 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017523 PGS003511
(cont-decay-haematocrit_perc)
PSS010789|
European Ancestry|
3,991 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017607 PGS003511
(cont-decay-haematocrit_perc)
PSS010621|
European Ancestry|
6,278 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM017691 PGS003511
(cont-decay-haematocrit_perc)
PSS010537|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM017775 PGS003511
(cont-decay-haematocrit_perc)
PSS010201|
European Ancestry|
2,264 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017859 PGS003511
(cont-decay-haematocrit_perc)
PSS010453|
South Asian Ancestry|
6,026 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM017943 PGS003511
(cont-decay-haematocrit_perc)
PSS010369|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018111 PGS003511
(cont-decay-haematocrit_perc)
PSS010705|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM018027 PGS003511
(cont-decay-haematocrit_perc)
PSS010285|
African Ancestry|
2,330 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haematocrit percentage partial-R2: 0.01 sex, age, deprivation index, PC1-16
PPM017440 PGS003512
(cont-decay-haemoglobin)
PSS010874|
European Ancestry|
19,417 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017524 PGS003512
(cont-decay-haemoglobin)
PSS010790|
European Ancestry|
3,990 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017608 PGS003512
(cont-decay-haemoglobin)
PSS010622|
European Ancestry|
6,277 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017692 PGS003512
(cont-decay-haemoglobin)
PSS010538|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM017776 PGS003512
(cont-decay-haemoglobin)
PSS010202|
European Ancestry|
2,263 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017860 PGS003512
(cont-decay-haemoglobin)
PSS010454|
South Asian Ancestry|
6,025 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM018028 PGS003512
(cont-decay-haemoglobin)
PSS010286|
African Ancestry|
2,327 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.01 sex, age, deprivation index, PC1-16
PPM018112 PGS003512
(cont-decay-haemoglobin)
PSS010706|
African Ancestry|
3,680 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017944 PGS003512
(cont-decay-haemoglobin)
PSS010370|
East Asian Ancestry|
1,749 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Haemoglobin concentration partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017443 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010877|
European Ancestry|
19,116 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017527 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010793|
European Ancestry|
3,913 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017611 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010625|
European Ancestry|
6,144 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017695 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010541|
Greater Middle Eastern Ancestry|
1,097 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM017779 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010205|
European Ancestry|
2,221 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017863 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010457|
South Asian Ancestry|
5,888 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM017947 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010373|
East Asian Ancestry|
1,711 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM018031 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010289|
African Ancestry|
2,282 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM018115 PGS003515
(cont-decay-immature_reticulocyte_frac)
PSS010709|
African Ancestry|
3,574 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Immature reticulocyte fraction partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017458 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010894|
European Ancestry|
11,449 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM017542 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010810|
European Ancestry|
2,277 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM017710 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010558|
Greater Middle Eastern Ancestry|
659 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017794 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010222|
European Ancestry|
1,249 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM017878 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010474|
South Asian Ancestry|
4,192 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018046 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010306|
African Ancestry|
1,285 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.0 sex, age, deprivation index, PC1-16
PPM018130 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010726|
African Ancestry|
2,085 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.01 sex, age, deprivation index, PC1-16
PPM017626 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010642|
European Ancestry|
3,283 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017962 PGS003530
(cont-decay-log_eosinophil_perc)
PSS010390|
East Asian Ancestry|
973 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Eosinophil percentage partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017461 PGS003533
(cont-decay-log_HbA1c)
PSS010897|
European Ancestry|
19,078 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017545 PGS003533
(cont-decay-log_HbA1c)
PSS010813|
European Ancestry|
3,920 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017629 PGS003533
(cont-decay-log_HbA1c)
PSS010645|
European Ancestry|
6,172 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017713 PGS003533
(cont-decay-log_HbA1c)
PSS010561|
Greater Middle Eastern Ancestry|
1,100 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017797 PGS003533
(cont-decay-log_HbA1c)
PSS010225|
European Ancestry|
2,233 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM017881 PGS003533
(cont-decay-log_HbA1c)
PSS010477|
South Asian Ancestry|
5,884 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM017965 PGS003533
(cont-decay-log_HbA1c)
PSS010393|
East Asian Ancestry|
1,718 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM018049 PGS003533
(cont-decay-log_HbA1c)
PSS010309|
African Ancestry|
2,089 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM018133 PGS003533
(cont-decay-log_HbA1c)
PSS010729|
African Ancestry|
2,950 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Glycated haemoglobin (HbA1c) partial-R2: 0.01 sex, age, deprivation index, PC1-16
PPM017469 PGS003541
(cont-decay-log_leukocyte)
PSS010906|
European Ancestry|
19,415 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017553 PGS003541
(cont-decay-log_leukocyte)
PSS010822|
European Ancestry|
3,991 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017721 PGS003541
(cont-decay-log_leukocyte)
PSS010570|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017805 PGS003541
(cont-decay-log_leukocyte)
PSS010234|
European Ancestry|
2,264 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017889 PGS003541
(cont-decay-log_leukocyte)
PSS010486|
South Asian Ancestry|
6,026 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM018057 PGS003541
(cont-decay-log_leukocyte)
PSS010318|
African Ancestry|
2,330 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018141 PGS003541
(cont-decay-log_leukocyte)
PSS010738|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017637 PGS003541
(cont-decay-log_leukocyte)
PSS010654|
European Ancestry|
6,278 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017973 PGS003541
(cont-decay-log_leukocyte)
PSS010402|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM017472 PGS003544
(cont-decay-log_monocyte)
PSS010909|
European Ancestry|
19,376 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.15 sex, age, deprivation index, PC1-16
PPM017640 PGS003544
(cont-decay-log_monocyte)
PSS010657|
European Ancestry|
6,264 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.13 sex, age, deprivation index, PC1-16
PPM017724 PGS003544
(cont-decay-log_monocyte)
PSS010573|
Greater Middle Eastern Ancestry|
1,121 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.14 sex, age, deprivation index, PC1-16
PPM017808 PGS003544
(cont-decay-log_monocyte)
PSS010237|
European Ancestry|
2,256 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.14 sex, age, deprivation index, PC1-16
PPM017892 PGS003544
(cont-decay-log_monocyte)
PSS010489|
South Asian Ancestry|
6,008 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017976 PGS003544
(cont-decay-log_monocyte)
PSS010405|
East Asian Ancestry|
1,748 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM018060 PGS003544
(cont-decay-log_monocyte)
PSS010321|
African Ancestry|
2,323 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM018144 PGS003544
(cont-decay-log_monocyte)
PSS010741|
African Ancestry|
3,670 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017556 PGS003544
(cont-decay-log_monocyte)
PSS010825|
European Ancestry|
3,982 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte count partial-R2: 0.14 sex, age, deprivation index, PC1-16
PPM017473 PGS003545
(cont-decay-log_neutrophil)
PSS010910|
European Ancestry|
19,374 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017557 PGS003545
(cont-decay-log_neutrophil)
PSS010826|
European Ancestry|
3,981 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017641 PGS003545
(cont-decay-log_neutrophil)
PSS010658|
European Ancestry|
6,260 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017725 PGS003545
(cont-decay-log_neutrophil)
PSS010574|
Greater Middle Eastern Ancestry|
1,119 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017809 PGS003545
(cont-decay-log_neutrophil)
PSS010238|
European Ancestry|
2,259 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017893 PGS003545
(cont-decay-log_neutrophil)
PSS010490|
South Asian Ancestry|
6,008 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017977 PGS003545
(cont-decay-log_neutrophil)
PSS010406|
East Asian Ancestry|
1,749 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM018061 PGS003545
(cont-decay-log_neutrophil)
PSS010322|
African Ancestry|
2,323 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018145 PGS003545
(cont-decay-log_neutrophil)
PSS010742|
African Ancestry|
3,668 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil count partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017474 PGS003546
(cont-decay-log_platelet)
PSS010911|
European Ancestry|
19,418 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.23 sex, age, deprivation index, PC1-16
PPM017558 PGS003546
(cont-decay-log_platelet)
PSS010827|
European Ancestry|
3,991 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.22 sex, age, deprivation index, PC1-16
PPM017642 PGS003546
(cont-decay-log_platelet)
PSS010659|
European Ancestry|
6,277 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.21 sex, age, deprivation index, PC1-16
PPM017726 PGS003546
(cont-decay-log_platelet)
PSS010575|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.22 sex, age, deprivation index, PC1-16
PPM017810 PGS003546
(cont-decay-log_platelet)
PSS010239|
European Ancestry|
2,263 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.17 sex, age, deprivation index, PC1-16
PPM017894 PGS003546
(cont-decay-log_platelet)
PSS010491|
South Asian Ancestry|
6,024 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.17 sex, age, deprivation index, PC1-16
PPM017978 PGS003546
(cont-decay-log_platelet)
PSS010407|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM018062 PGS003546
(cont-decay-log_platelet)
PSS010323|
African Ancestry|
2,330 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM018146 PGS003546
(cont-decay-log_platelet)
PSS010743|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet count partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM017475 PGS003547
(cont-decay-log_platelet_crit)
PSS010912|
European Ancestry|
19,417 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.18 sex, age, deprivation index, PC1-16
PPM017559 PGS003547
(cont-decay-log_platelet_crit)
PSS010828|
European Ancestry|
3,991 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.19 sex, age, deprivation index, PC1-16
PPM017643 PGS003547
(cont-decay-log_platelet_crit)
PSS010660|
European Ancestry|
6,277 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017727 PGS003547
(cont-decay-log_platelet_crit)
PSS010576|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.17 sex, age, deprivation index, PC1-16
PPM017811 PGS003547
(cont-decay-log_platelet_crit)
PSS010240|
European Ancestry|
2,263 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.13 sex, age, deprivation index, PC1-16
PPM017895 PGS003547
(cont-decay-log_platelet_crit)
PSS010492|
South Asian Ancestry|
6,024 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017979 PGS003547
(cont-decay-log_platelet_crit)
PSS010408|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM018063 PGS003547
(cont-decay-log_platelet_crit)
PSS010324|
African Ancestry|
2,330 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM018147 PGS003547
(cont-decay-log_platelet_crit)
PSS010744|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet crit partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017560 PGS003548
(cont-decay-log_platelet_volume)
PSS010829|
European Ancestry|
3,991 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.35 sex, age, deprivation index, PC1-16
PPM017644 PGS003548
(cont-decay-log_platelet_volume)
PSS010661|
European Ancestry|
6,278 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.31 sex, age, deprivation index, PC1-16
PPM017812 PGS003548
(cont-decay-log_platelet_volume)
PSS010241|
European Ancestry|
2,264 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.28 sex, age, deprivation index, PC1-16
PPM017896 PGS003548
(cont-decay-log_platelet_volume)
PSS010493|
South Asian Ancestry|
6,026 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.26 sex, age, deprivation index, PC1-16
PPM017980 PGS003548
(cont-decay-log_platelet_volume)
PSS010409|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.19 sex, age, deprivation index, PC1-16
PPM018064 PGS003548
(cont-decay-log_platelet_volume)
PSS010325|
African Ancestry|
2,330 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM018148 PGS003548
(cont-decay-log_platelet_volume)
PSS010745|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017476 PGS003548
(cont-decay-log_platelet_volume)
PSS010913|
European Ancestry|
19,418 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.34 sex, age, deprivation index, PC1-16
PPM017728 PGS003548
(cont-decay-log_platelet_volume)
PSS010577|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean platelet (thrombocyte) volume partial-R2: 0.26 sex, age, deprivation index, PC1-16
PPM017477 PGS003549
(cont-decay-log_platelet_width)
PSS010915|
European Ancestry|
19,418 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.21 sex, age, deprivation index, PC1-16
PPM017561 PGS003549
(cont-decay-log_platelet_width)
PSS010831|
European Ancestry|
3,991 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.21 sex, age, deprivation index, PC1-16
PPM017645 PGS003549
(cont-decay-log_platelet_width)
PSS010663|
European Ancestry|
6,278 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.19 sex, age, deprivation index, PC1-16
PPM017729 PGS003549
(cont-decay-log_platelet_width)
PSS010579|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.18 sex, age, deprivation index, PC1-16
PPM017897 PGS003549
(cont-decay-log_platelet_width)
PSS010495|
South Asian Ancestry|
6,026 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.18 sex, age, deprivation index, PC1-16
PPM017981 PGS003549
(cont-decay-log_platelet_width)
PSS010411|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM018065 PGS003549
(cont-decay-log_platelet_width)
PSS010327|
African Ancestry|
2,330 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM018149 PGS003549
(cont-decay-log_platelet_width)
PSS010747|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM017813 PGS003549
(cont-decay-log_platelet_width)
PSS010243|
European Ancestry|
2,264 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Platelet distribution width partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017479 PGS003551
(cont-decay-log_reticulocyte)
PSS010917|
European Ancestry|
19,111 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.15 sex, age, deprivation index, PC1-16
PPM017563 PGS003551
(cont-decay-log_reticulocyte)
PSS010833|
European Ancestry|
3,912 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.14 sex, age, deprivation index, PC1-16
PPM017647 PGS003551
(cont-decay-log_reticulocyte)
PSS010665|
European Ancestry|
6,143 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.14 sex, age, deprivation index, PC1-16
PPM017731 PGS003551
(cont-decay-log_reticulocyte)
PSS010581|
Greater Middle Eastern Ancestry|
1,097 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017815 PGS003551
(cont-decay-log_reticulocyte)
PSS010245|
European Ancestry|
2,221 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.13 sex, age, deprivation index, PC1-16
PPM017899 PGS003551
(cont-decay-log_reticulocyte)
PSS010497|
South Asian Ancestry|
5,886 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM017983 PGS003551
(cont-decay-log_reticulocyte)
PSS010413|
East Asian Ancestry|
1,711 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM018067 PGS003551
(cont-decay-log_reticulocyte)
PSS010329|
African Ancestry|
2,282 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM018151 PGS003551
(cont-decay-log_reticulocyte)
PSS010749|
African Ancestry|
3,574 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Reticulocyte count partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017905 PGS003557
(cont-decay-lymphocyte_perc)
PSS010503|
South Asian Ancestry|
6,004 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM017485 PGS003557
(cont-decay-lymphocyte_perc)
PSS010923|
European Ancestry|
19,370 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017569 PGS003557
(cont-decay-lymphocyte_perc)
PSS010839|
European Ancestry|
3,981 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM017737 PGS003557
(cont-decay-lymphocyte_perc)
PSS010587|
Greater Middle Eastern Ancestry|
1,120 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM017821 PGS003557
(cont-decay-lymphocyte_perc)
PSS010251|
European Ancestry|
2,258 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017989 PGS003557
(cont-decay-lymphocyte_perc)
PSS010419|
East Asian Ancestry|
1,749 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM018073 PGS003557
(cont-decay-lymphocyte_perc)
PSS010335|
African Ancestry|
2,324 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018157 PGS003557
(cont-decay-lymphocyte_perc)
PSS010755|
African Ancestry|
3,666 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017653 PGS003557
(cont-decay-lymphocyte_perc)
PSS010671|
European Ancestry|
6,258 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Lymphocyte percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017572 PGS003560
(cont-decay-MCH)
PSS010843|
European Ancestry|
3,989 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.15 sex, age, deprivation index, PC1-16
PPM017656 PGS003560
(cont-decay-MCH)
PSS010675|
European Ancestry|
6,276 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017740 PGS003560
(cont-decay-MCH)
PSS010591|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM017908 PGS003560
(cont-decay-MCH)
PSS010507|
South Asian Ancestry|
6,026 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM017992 PGS003560
(cont-decay-MCH)
PSS010423|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM018076 PGS003560
(cont-decay-MCH)
PSS010339|
African Ancestry|
2,330 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM018160 PGS003560
(cont-decay-MCH)
PSS010759|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.01 sex, age, deprivation index, PC1-16
PPM017488 PGS003560
(cont-decay-MCH)
PSS010927|
European Ancestry|
19,414 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.19 sex, age, deprivation index, PC1-16
PPM017824 PGS003560
(cont-decay-MCH)
PSS010255|
European Ancestry|
2,263 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular haemoglobin partial-R2: 0.14 sex, age, deprivation index, PC1-16
PPM017573 PGS003561
(cont-decay-MCV)
PSS010844|
European Ancestry|
3,991 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017657 PGS003561
(cont-decay-MCV)
PSS010676|
European Ancestry|
6,278 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017741 PGS003561
(cont-decay-MCV)
PSS010592|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM017825 PGS003561
(cont-decay-MCV)
PSS010256|
European Ancestry|
2,264 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017909 PGS003561
(cont-decay-MCV)
PSS010508|
South Asian Ancestry|
6,026 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017993 PGS003561
(cont-decay-MCV)
PSS010424|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM018077 PGS003561
(cont-decay-MCV)
PSS010340|
African Ancestry|
2,329 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018161 PGS003561
(cont-decay-MCV)
PSS010760|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.01 sex, age, deprivation index, PC1-16
PPM017489 PGS003561
(cont-decay-MCV)
PSS010928|
European Ancestry|
19,418 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean corpuscular volume partial-R2: 0.2 sex, age, deprivation index, PC1-16
PPM017574 PGS003562
(cont-decay-monocyte_perc)
PSS010845|
European Ancestry|
3,952 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017658 PGS003562
(cont-decay-monocyte_perc)
PSS010677|
European Ancestry|
6,213 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017826 PGS003562
(cont-decay-monocyte_perc)
PSS010257|
European Ancestry|
2,241 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.15 sex, age, deprivation index, PC1-16
PPM017910 PGS003562
(cont-decay-monocyte_perc)
PSS010509|
South Asian Ancestry|
5,958 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017994 PGS003562
(cont-decay-monocyte_perc)
PSS010425|
East Asian Ancestry|
1,732 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM018078 PGS003562
(cont-decay-monocyte_perc)
PSS010341|
African Ancestry|
2,285 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM018162 PGS003562
(cont-decay-monocyte_perc)
PSS010761|
African Ancestry|
3,634 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017490 PGS003562
(cont-decay-monocyte_perc)
PSS010929|
European Ancestry|
19,237 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017742 PGS003562
(cont-decay-monocyte_perc)
PSS010593|
Greater Middle Eastern Ancestry|
1,114 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Monocyte percentage partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017494 PGS003566
(cont-decay-neutrophil_perc)
PSS010933|
European Ancestry|
19,342 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017662 PGS003566
(cont-decay-neutrophil_perc)
PSS010681|
European Ancestry|
6,254 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM017746 PGS003566
(cont-decay-neutrophil_perc)
PSS010597|
Greater Middle Eastern Ancestry|
1,117 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017830 PGS003566
(cont-decay-neutrophil_perc)
PSS010261|
European Ancestry|
2,256 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017914 PGS003566
(cont-decay-neutrophil_perc)
PSS010513|
South Asian Ancestry|
6,003 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.07 sex, age, deprivation index, PC1-16
PPM017998 PGS003566
(cont-decay-neutrophil_perc)
PSS010429|
East Asian Ancestry|
1,748 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM018082 PGS003566
(cont-decay-neutrophil_perc)
PSS010345|
African Ancestry|
2,321 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM018166 PGS003566
(cont-decay-neutrophil_perc)
PSS010765|
African Ancestry|
3,652 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017578 PGS003566
(cont-decay-neutrophil_perc)
PSS010849|
European Ancestry|
3,977 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Neutrophil percentage partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017495 PGS003567
(cont-decay-reticulocyte_volume)
PSS010934|
European Ancestry|
19,112 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.15 sex, age, deprivation index, PC1-16
PPM017579 PGS003567
(cont-decay-reticulocyte_volume)
PSS010850|
European Ancestry|
3,913 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.15 sex, age, deprivation index, PC1-16
PPM017663 PGS003567
(cont-decay-reticulocyte_volume)
PSS010682|
European Ancestry|
6,144 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.13 sex, age, deprivation index, PC1-16
PPM017747 PGS003567
(cont-decay-reticulocyte_volume)
PSS010598|
Greater Middle Eastern Ancestry|
1,097 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017831 PGS003567
(cont-decay-reticulocyte_volume)
PSS010262|
European Ancestry|
2,221 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017915 PGS003567
(cont-decay-reticulocyte_volume)
PSS010514|
South Asian Ancestry|
5,886 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM017999 PGS003567
(cont-decay-reticulocyte_volume)
PSS010430|
East Asian Ancestry|
1,711 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.06 sex, age, deprivation index, PC1-16
PPM018083 PGS003567
(cont-decay-reticulocyte_volume)
PSS010346|
African Ancestry|
2,281 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM018167 PGS003567
(cont-decay-reticulocyte_volume)
PSS010766|
African Ancestry|
3,574 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean reticulocyte volume partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM017834 PGS003570
(cont-decay-sphered_cell_volume)
PSS010266|
European Ancestry|
2,220 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017498 PGS003570
(cont-decay-sphered_cell_volume)
PSS010938|
European Ancestry|
19,109 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.16 sex, age, deprivation index, PC1-16
PPM017582 PGS003570
(cont-decay-sphered_cell_volume)
PSS010854|
European Ancestry|
3,913 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.15 sex, age, deprivation index, PC1-16
PPM017750 PGS003570
(cont-decay-sphered_cell_volume)
PSS010602|
Greater Middle Eastern Ancestry|
1,096 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017918 PGS003570
(cont-decay-sphered_cell_volume)
PSS010518|
South Asian Ancestry|
5,885 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM018002 PGS003570
(cont-decay-sphered_cell_volume)
PSS010434|
East Asian Ancestry|
1,711 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM018086 PGS003570
(cont-decay-sphered_cell_volume)
PSS010350|
African Ancestry|
2,280 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.04 sex, age, deprivation index, PC1-16
PPM017666 PGS003570
(cont-decay-sphered_cell_volume)
PSS010686|
European Ancestry|
6,139 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.13 sex, age, deprivation index, PC1-16
PPM018170 PGS003570
(cont-decay-sphered_cell_volume)
PSS010770|
African Ancestry|
3,573 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Mean sphered cell volume partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM018940 PGS003924
(INI30000)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.09098 [0.07103, 0.11094]
PGS R2 (no covariates): 0.07615 [0.05759, 0.0947]
Incremental R2 (full-covars): 0.07328
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018941 PGS003924
(INI30000)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.09373 [0.06559, 0.12186]
PGS R2 (no covariates): 0.08974 [0.06208, 0.11739]
Incremental R2 (full-covars): 0.08665
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018942 PGS003924
(INI30000)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.05083 [0.02681, 0.07484]
PGS R2 (no covariates): 0.04407 [0.02155, 0.06659]
Incremental R2 (full-covars): 0.04309
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018943 PGS003924
(INI30000)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.09843 [0.08604, 0.11081]
PGS R2 (no covariates): 0.08243 [0.0709, 0.09397]
Incremental R2 (full-covars): 0.07062
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018939 PGS003924
(INI30000)
PSS011136|
European Ancestry|
65,932 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.08905 [0.08496, 0.09315]
PGS R2 (no covariates): 0.07643 [0.07259, 0.08028]
Incremental R2 (full-covars): 0.07561
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018944 PGS003925
(INI30010)
PSS011136|
European Ancestry|
65,932 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) count : 0.38181 [0.37606, 0.38756]
PGS R2 (no covariates): 0.1179 [0.11333, 0.12246]
Incremental R2 (full-covars): 0.1164
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018945 PGS003925
(INI30010)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) count : 0.38936 [0.36163, 0.41709]
PGS R2 (no covariates): 0.09281 [0.0727, 0.11293]
Incremental R2 (full-covars): 0.09305
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018946 PGS003925
(INI30010)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) count : 0.35286 [0.31388, 0.39185]
PGS R2 (no covariates): 0.07492 [0.04924, 0.1006]
Incremental R2 (full-covars): 0.0761
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018947 PGS003925
(INI30010)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) count : 0.29476 [0.25179, 0.33773]
PGS R2 (no covariates): 0.04144 [0.01954, 0.06333]
Incremental R2 (full-covars): 0.03544
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018948 PGS003925
(INI30010)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) count : 0.38816 [0.37147, 0.40486]
PGS R2 (no covariates): 0.10146 [0.08893, 0.114]
Incremental R2 (full-covars): 0.07754
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018949 PGS003926
(INI30020)
PSS011136|
European Ancestry|
65,932 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hemoglobin concentration : 0.4378 [0.43219, 0.4434]
PGS R2 (no covariates): 0.06821 [0.06455, 0.07188]
Incremental R2 (full-covars): 0.06859
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018950 PGS003926
(INI30020)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hemoglobin concentration : 0.46462 [0.43806, 0.49117]
PGS R2 (no covariates): 0.06272 [0.04564, 0.0798]
Incremental R2 (full-covars): 0.06567
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018951 PGS003926
(INI30020)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hemoglobin concentration : 0.43017 [0.39227, 0.46807]
PGS R2 (no covariates): 0.02868 [0.012, 0.04536]
Incremental R2 (full-covars): 0.03286
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018952 PGS003926
(INI30020)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hemoglobin concentration : 0.40118 [0.35861, 0.44374]
PGS R2 (no covariates): 0.01753 [0.00293, 0.03213]
Incremental R2 (full-covars): 0.00674
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018953 PGS003926
(INI30020)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hemoglobin concentration : 0.43523 [0.41892, 0.45155]
PGS R2 (no covariates): 0.04824 [0.03908, 0.05739]
Incremental R2 (full-covars): 0.0422
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018954 PGS003927
(INI30030)
PSS011136|
European Ancestry|
65,932 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hematocrit percentage : 0.39954 [0.39382, 0.40526]
PGS R2 (no covariates): 0.06736 [0.06371, 0.071]
Incremental R2 (full-covars): 0.0668
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018955 PGS003927
(INI30030)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hematocrit percentage : 0.42556 [0.39828, 0.45283]
PGS R2 (no covariates): 0.05792 [0.04142, 0.07443]
Incremental R2 (full-covars): 0.0582
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018957 PGS003927
(INI30030)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hematocrit percentage : 0.4128 [0.37046, 0.45514]
PGS R2 (no covariates): 0.0161 [0.00209, 0.0301]
Incremental R2 (full-covars): 0.00702
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018958 PGS003927
(INI30030)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hematocrit percentage : 0.40359 [0.387, 0.42018]
PGS R2 (no covariates): 0.04862 [0.03943, 0.05781]
Incremental R2 (full-covars): 0.04508
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018956 PGS003927
(INI30030)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Hematocrit percentage : 0.42574 [0.38774, 0.46374]
PGS R2 (no covariates): 0.03312 [0.01528, 0.05097]
Incremental R2 (full-covars): 0.03573
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018959 PGS003928
(INI30040)
PSS011136|
European Ancestry|
65,932 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular volume : 0.21483 [0.20935, 0.22031]
PGS R2 (no covariates): 0.1996 [0.19422, 0.20499]
Incremental R2 (full-covars): 0.19669
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018960 PGS003928
(INI30040)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular volume : 0.21868 [0.19209, 0.24527]
PGS R2 (no covariates): 0.19629 [0.17038, 0.22221]
Incremental R2 (full-covars): 0.19227
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018961 PGS003928
(INI30040)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular volume : 0.13118 [0.09927, 0.1631]
PGS R2 (no covariates): 0.10078 [0.07183, 0.12973]
Incremental R2 (full-covars): 0.09425
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018962 PGS003928
(INI30040)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular volume : 0.07522 [0.04675, 0.10368]
PGS R2 (no covariates): 0.05806 [0.03259, 0.08353]
Incremental R2 (full-covars): 0.05248
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018963 PGS003928
(INI30040)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular volume : 0.18827 [0.17284, 0.20369]
PGS R2 (no covariates): 0.14096 [0.12683, 0.15508]
Incremental R2 (full-covars): 0.11206
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018964 PGS003929
(INI30050)
PSS011136|
European Ancestry|
65,932 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin : 0.1843 [0.17903, 0.18957]
PGS R2 (no covariates): 0.16693 [0.1618, 0.17205]
Incremental R2 (full-covars): 0.16424
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018965 PGS003929
(INI30050)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin : 0.20494 [0.17875, 0.23114]
PGS R2 (no covariates): 0.18314 [0.1577, 0.20858]
Incremental R2 (full-covars): 0.17698
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018966 PGS003929
(INI30050)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin : 0.11596 [0.08543, 0.14649]
PGS R2 (no covariates): 0.08633 [0.05911, 0.11356]
Incremental R2 (full-covars): 0.08195
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018967 PGS003929
(INI30050)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin : 0.07189 [0.04397, 0.09982]
PGS R2 (no covariates): 0.05454 [0.02976, 0.07932]
Incremental R2 (full-covars): 0.05029
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018968 PGS003929
(INI30050)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin : 0.17414 [0.15905, 0.18923]
PGS R2 (no covariates): 0.1276 [0.11395, 0.14124]
Incremental R2 (full-covars): 0.0916
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018969 PGS003930
(INI30060)
PSS011137|
European Ancestry|
65,929 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin concentration : 0.03988 [0.03699, 0.04277]
PGS R2 (no covariates): 0.0253 [0.02296, 0.02763]
Incremental R2 (full-covars): 0.02492
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018970 PGS003930
(INI30060)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin concentration : 0.0486 [0.03333, 0.06386]
PGS R2 (no covariates): 0.03186 [0.01929, 0.04444]
Incremental R2 (full-covars): 0.02908
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018971 PGS003930
(INI30060)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin concentration : 0.0252 [0.0095, 0.04089]
PGS R2 (no covariates): 0.01719 [0.00412, 0.03026]
Incremental R2 (full-covars): 0.01588
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018973 PGS003930
(INI30060)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin concentration : 0.04959 [0.04032, 0.05886]
PGS R2 (no covariates): 0.02383 [0.01723, 0.03043]
Incremental R2 (full-covars): 0.01421
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018972 PGS003930
(INI30060)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean corpuscular hemoglobin concentration : 0.01616 [0.00212, 0.03019]
PGS R2 (no covariates): 0.00861 [-0.00171, 0.01894]
Incremental R2 (full-covars): 0.00736
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018974 PGS003931
(INI30070)
PSS011136|
European Ancestry|
65,932 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) distribution width : 0.09215 [0.088, 0.0963]
PGS R2 (no covariates): 0.07947 [0.07556, 0.08338]
Incremental R2 (full-covars): 0.07934
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018975 PGS003931
(INI30070)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) distribution width : 0.10616 [0.08496, 0.12736]
PGS R2 (no covariates): 0.08744 [0.06781, 0.10708]
Incremental R2 (full-covars): 0.08479
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018976 PGS003931
(INI30070)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) distribution width : 0.06648 [0.04207, 0.09088]
PGS R2 (no covariates): 0.05249 [0.03048, 0.07451]
Incremental R2 (full-covars): 0.05172
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018977 PGS003931
(INI30070)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) distribution width : 0.0264 [0.00865, 0.04415]
PGS R2 (no covariates): 0.01807 [0.00326, 0.03288]
Incremental R2 (full-covars): 0.01826
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018978 PGS003931
(INI30070)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Red blood cell (erythrocyte) distribution width : 0.08776 [0.07593, 0.09959]
PGS R2 (no covariates): 0.06743 [0.05683, 0.07804]
Incremental R2 (full-covars): 0.06076
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018979 PGS003932
(INI30080)
PSS011145|
European Ancestry|
65,931 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet count : 0.26848 [0.26277, 0.27419]
PGS R2 (no covariates): 0.20939 [0.20394, 0.21484]
Incremental R2 (full-covars): 0.20822
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018980 PGS003932
(INI30080)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet count : 0.26562 [0.23807, 0.29316]
PGS R2 (no covariates): 0.22463 [0.19789, 0.25138]
Incremental R2 (full-covars): 0.22027
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018981 PGS003932
(INI30080)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet count : 0.23486 [0.19726, 0.27247]
PGS R2 (no covariates): 0.15582 [0.12203, 0.18962]
Incremental R2 (full-covars): 0.15006
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018982 PGS003932
(INI30080)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet count : 0.13941 [0.10335, 0.17547]
PGS R2 (no covariates): 0.06653 [0.03951, 0.09355]
Incremental R2 (full-covars): 0.0492
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018983 PGS003932
(INI30080)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet count : 0.24864 [0.23223, 0.26504]
PGS R2 (no covariates): 0.19334 [0.17781, 0.20888]
Incremental R2 (full-covars): 0.18573
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018984 PGS003933
(INI30090)
PSS011138|
European Ancestry|
65,896 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet crit : 0.25161 [0.24596, 0.25727]
PGS R2 (no covariates): 0.16315 [0.15806, 0.16824]
Incremental R2 (full-covars): 0.16228
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018985 PGS003933
(INI30090)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet crit : 0.24843 [0.22117, 0.27569]
PGS R2 (no covariates): 0.17673 [0.15154, 0.20191]
Incremental R2 (full-covars): 0.17323
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018986 PGS003933
(INI30090)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet crit : 0.24781 [0.20983, 0.28578]
PGS R2 (no covariates): 0.11999 [0.08908, 0.1509]
Incremental R2 (full-covars): 0.10886
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018987 PGS003933
(INI30090)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet crit : 0.1523 [0.11518, 0.18943]
PGS R2 (no covariates): 0.04384 [0.02137, 0.06631]
Incremental R2 (full-covars): 0.02917
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018988 PGS003933
(INI30090)
PSS011167|
Multi-ancestry (excluding European)|
7,743 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet crit : 0.22916 [0.213, 0.24532]
PGS R2 (no covariates): 0.13828 [0.12425, 0.15231]
Incremental R2 (full-covars): 0.13431
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018989 PGS003934
(INI30100)
PSS011144|
European Ancestry|
65,930 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean platelet (thrombocyte) volume : 0.36086 [0.35507, 0.36664]
PGS R2 (no covariates): 0.35829 [0.35251, 0.36408]
Incremental R2 (full-covars): 0.35783
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018990 PGS003934
(INI30100)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean platelet (thrombocyte) volume : 0.36427 [0.33635, 0.3922]
PGS R2 (no covariates): 0.35942 [0.33147, 0.38737]
Incremental R2 (full-covars): 0.35587
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018991 PGS003934
(INI30100)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean platelet (thrombocyte) volume : 0.2322 [0.19468, 0.26972]
PGS R2 (no covariates): 0.23172 [0.19421, 0.26922]
Incremental R2 (full-covars): 0.22951
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018993 PGS003934
(INI30100)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean platelet (thrombocyte) volume : 0.30944 [0.29261, 0.32626]
PGS R2 (no covariates): 0.31539 [0.29855, 0.33222]
Incremental R2 (full-covars): 0.2903
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018992 PGS003934
(INI30100)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean platelet (thrombocyte) volume : 0.10997 [0.07685, 0.1431]
PGS R2 (no covariates): 0.10936 [0.0763, 0.14241]
Incremental R2 (full-covars): 0.10916
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018994 PGS003935
(INI30110)
PSS011138|
European Ancestry|
65,896 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet distribution width : 0.23112 [0.22556, 0.23669]
PGS R2 (no covariates): 0.20884 [0.20339, 0.21428]
Incremental R2 (full-covars): 0.20956
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018996 PGS003935
(INI30110)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet distribution width : 0.18373 [0.14825, 0.21922]
PGS R2 (no covariates): 0.16615 [0.13168, 0.20061]
Incremental R2 (full-covars): 0.17042
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018998 PGS003935
(INI30110)
PSS011167|
Multi-ancestry (excluding European)|
7,743 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet distribution width : 0.22441 [0.20832, 0.2405]
PGS R2 (no covariates): 0.19806 [0.18243, 0.21368]
Incremental R2 (full-covars): 0.17896
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018995 PGS003935
(INI30110)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet distribution width : 0.20802 [0.18174, 0.23431]
PGS R2 (no covariates): 0.19878 [0.17279, 0.22478]
Incremental R2 (full-covars): 0.19816
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018997 PGS003935
(INI30110)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Platelet distribution width : 0.0902 [0.05954, 0.12087]
PGS R2 (no covariates): 0.06578 [0.03889, 0.09267]
Incremental R2 (full-covars): 0.05799
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018999 PGS003936
(INI30120)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte count : 0.02749 [0.02507, 0.02992]
PGS R2 (no covariates): 0.02217 [0.01997, 0.02436]
Incremental R2 (full-covars): 0.02189
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019000 PGS003936
(INI30120)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte count : 0.03382 [0.02089, 0.04675]
PGS R2 (no covariates): 0.02699 [0.01535, 0.03862]
Incremental R2 (full-covars): 0.02644
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019001 PGS003936
(INI30120)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte count : 0.05901 [0.03583, 0.08219]
PGS R2 (no covariates): 0.04232 [0.02234, 0.0623]
Incremental R2 (full-covars): 0.03929
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019002 PGS003936
(INI30120)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte count : 0.01861 [0.00358, 0.03363]
PGS R2 (no covariates): 0.00551 [-0.00278, 0.01379]
Incremental R2 (full-covars): -0.00495
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019003 PGS003936
(INI30120)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte count : 0.04696 [0.03792, 0.05601]
PGS R2 (no covariates): 0.02897 [0.02173, 0.0362]
Incremental R2 (full-covars): 0.02614
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019004 PGS003937
(INI30130)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte count : 0.12426 [0.11961, 0.12891]
PGS R2 (no covariates): 0.08189 [0.07793, 0.08585]
Incremental R2 (full-covars): 0.08198
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019005 PGS003937
(INI30130)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte count : 0.14509 [0.12139, 0.16879]
PGS R2 (no covariates): 0.0898 [0.06995, 0.10965]
Incremental R2 (full-covars): 0.08851
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019006 PGS003937
(INI30130)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte count : 0.11251 [0.08232, 0.1427]
PGS R2 (no covariates): 0.07028 [0.04528, 0.09527]
Incremental R2 (full-covars): 0.06806
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019007 PGS003937
(INI30130)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte count : 0.0334 [0.01357, 0.05322]
PGS R2 (no covariates): 0.03342 [0.01359, 0.05325]
Incremental R2 (full-covars): 0.02807
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019008 PGS003937
(INI30130)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte count : 0.11068 [0.09772, 0.12363]
PGS R2 (no covariates): 0.07932 [0.06797, 0.09067]
Incremental R2 (full-covars): 0.06798
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019009 PGS003938
(INI30140)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil count : 0.10887 [0.10444, 0.1133]
PGS R2 (no covariates): 0.09021 [0.0861, 0.09433]
Incremental R2 (full-covars): 0.08972
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019010 PGS003938
(INI30140)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil count : 0.11328 [0.09156, 0.13501]
PGS R2 (no covariates): 0.09258 [0.07249, 0.11268]
Incremental R2 (full-covars): 0.09167
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019011 PGS003938
(INI30140)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil count : 0.0886 [0.06109, 0.11611]
PGS R2 (no covariates): 0.08009 [0.05369, 0.10649]
Incremental R2 (full-covars): 0.07779
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019012 PGS003938
(INI30140)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil count : 0.07013 [0.0425, 0.09777]
PGS R2 (no covariates): 0.05672 [0.03151, 0.08193]
Incremental R2 (full-covars): 0.05374
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019013 PGS003938
(INI30140)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil count : 0.10909 [0.0962, 0.12197]
PGS R2 (no covariates): 0.09632 [0.08404, 0.1086]
Incremental R2 (full-covars): 0.07245
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019014 PGS003939
(INI30150)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil count : 0.10132 [0.09701, 0.10563]
PGS R2 (no covariates): 0.09268 [0.08852, 0.09684]
Incremental R2 (full-covars): 0.0925
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019015 PGS003939
(INI30150)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil count : 0.08417 [0.06484, 0.10351]
PGS R2 (no covariates): 0.0719 [0.05379, 0.09001]
Incremental R2 (full-covars): 0.07156
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019016 PGS003939
(INI30150)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil count : 0.05308 [0.03095, 0.0752]
PGS R2 (no covariates): 0.048 [0.02685, 0.06916]
Incremental R2 (full-covars): 0.04773
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019017 PGS003939
(INI30150)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil count : 0.01311 [0.00043, 0.0258]
PGS R2 (no covariates): 0.00652 [-0.00248, 0.01551]
Incremental R2 (full-covars): 0.00319
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019018 PGS003939
(INI30150)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil count : 0.09274 [0.08064, 0.10484]
PGS R2 (no covariates): 0.06898 [0.05827, 0.07969]
Incremental R2 (full-covars): 0.06441
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019019 PGS003940
(INI30160)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil count : 0.01943 [0.01737, 0.02149]
PGS R2 (no covariates): 0.01516 [0.01334, 0.01699]
Incremental R2 (full-covars): 0.01498
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019021 PGS003940
(INI30160)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil count : 0.00683 [-0.00149, 0.01515]
PGS R2 (no covariates): 0.00551 [-0.00198, 0.013]
Incremental R2 (full-covars): 0.00504
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019020 PGS003940
(INI30160)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil count : 0.02167 [0.01119, 0.03216]
PGS R2 (no covariates): 0.01847 [0.00876, 0.02818]
Incremental R2 (full-covars): 0.01766
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019022 PGS003940
(INI30160)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil count : 0.00981 [-0.00119, 0.02082]
PGS R2 (no covariates): 0.00446 [-0.003, 0.01192]
Incremental R2 (full-covars): 0.00447
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019023 PGS003940
(INI30160)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil count : 0.02131 [0.01506, 0.02757]
PGS R2 (no covariates): 0.01354 [0.00851, 0.01856]
Incremental R2 (full-covars): 0.01229
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019024 PGS003941
(INI30180)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte percentage : 0.12323 [0.1186, 0.12787]
PGS R2 (no covariates): 0.09003 [0.08592, 0.09414]
Incremental R2 (full-covars): 0.09003
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019025 PGS003941
(INI30180)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte percentage : 0.11201 [0.09038, 0.13364]
PGS R2 (no covariates): 0.08186 [0.06274, 0.10098]
Incremental R2 (full-covars): 0.08335
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019026 PGS003941
(INI30180)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte percentage : 0.07411 [0.04855, 0.09967]
PGS R2 (no covariates): 0.05351 [0.03131, 0.07571]
Incremental R2 (full-covars): 0.05293
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019027 PGS003941
(INI30180)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte percentage : 0.06881 [0.0414, 0.09623]
PGS R2 (no covariates): 0.0468 [0.02366, 0.06995]
Incremental R2 (full-covars): 0.04285
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019028 PGS003941
(INI30180)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Lymphocyte percentage : 0.15346 [0.13894, 0.16798]
PGS R2 (no covariates): 0.11132 [0.09834, 0.12431]
Incremental R2 (full-covars): 0.07958
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019029 PGS003942
(INI30190)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte percentage : 0.1281 [0.1234, 0.1328]
PGS R2 (no covariates): 0.08549 [0.08146, 0.08952]
Incremental R2 (full-covars): 0.0852
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019030 PGS003942
(INI30190)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte percentage : 0.1222 [0.09987, 0.14453]
PGS R2 (no covariates): 0.08548 [0.06603, 0.10494]
Incremental R2 (full-covars): 0.08222
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019031 PGS003942
(INI30190)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte percentage : 0.15234 [0.11879, 0.18589]
PGS R2 (no covariates): 0.07059 [0.04555, 0.09563]
Incremental R2 (full-covars): 0.06921
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019032 PGS003942
(INI30190)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte percentage : 0.03382 [0.01388, 0.05376]
PGS R2 (no covariates): 0.01755 [0.00294, 0.03215]
Incremental R2 (full-covars): 0.01822
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019033 PGS003942
(INI30190)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Monocyte percentage : 0.08833 [0.07647, 0.1002]
PGS R2 (no covariates): 0.0562 [0.0464, 0.06599]
Incremental R2 (full-covars): 0.04903
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019034 PGS003943
(INI30200)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil percentage : 0.0952 [0.091, 0.09941]
PGS R2 (no covariates): 0.08263 [0.07866, 0.0866]
Incremental R2 (full-covars): 0.08285
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019035 PGS003943
(INI30200)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil percentage : 0.08975 [0.0699, 0.10959]
PGS R2 (no covariates): 0.08096 [0.06193, 0.09999]
Incremental R2 (full-covars): 0.08129
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019037 PGS003943
(INI30200)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil percentage : 0.06709 [0.03997, 0.09421]
PGS R2 (no covariates): 0.04252 [0.02036, 0.06467]
Incremental R2 (full-covars): 0.03641
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019038 PGS003943
(INI30200)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil percentage : 0.1212 [0.1078, 0.1346]
PGS R2 (no covariates): 0.09346 [0.08132, 0.10559]
Incremental R2 (full-covars): 0.06663
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019036 PGS003943
(INI30200)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Neutrophil percentage : 0.05999 [0.03664, 0.08334]
PGS R2 (no covariates): 0.04709 [0.02612, 0.06807]
Incremental R2 (full-covars): 0.04754
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019039 PGS003944
(INI30210)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil percentage : 0.10224 [0.09792, 0.10657]
PGS R2 (no covariates): 0.09455 [0.09036, 0.09874]
Incremental R2 (full-covars): 0.09429
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019040 PGS003944
(INI30210)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil percentage : 0.06945 [0.0516, 0.0873]
PGS R2 (no covariates): 0.05892 [0.04229, 0.07554]
Incremental R2 (full-covars): 0.05918
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019041 PGS003944
(INI30210)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil percentage : 0.07575 [0.04995, 0.10155]
PGS R2 (no covariates): 0.06543 [0.04119, 0.08968]
Incremental R2 (full-covars): 0.06438
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019042 PGS003944
(INI30210)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil percentage : 0.01699 [0.00261, 0.03136]
PGS R2 (no covariates): 0.00576 [-0.00271, 0.01422]
Incremental R2 (full-covars): -0.00348
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019043 PGS003944
(INI30210)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Eosinophil percentage : 0.09676 [0.08445, 0.10906]
PGS R2 (no covariates): 0.07585 [0.0647, 0.08699]
Incremental R2 (full-covars): 0.07466
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019044 PGS003945
(INI30220)
PSS011139|
European Ancestry|
65,814 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil percentage : 0.01773 [0.01576, 0.01971]
PGS R2 (no covariates): 0.01574 [0.01388, 0.0176]
Incremental R2 (full-covars): 0.01546
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019046 PGS003945
(INI30220)
PSS011112|
South Asian Ancestry|
1,428 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil percentage : 0.00464 [-0.00224, 0.01152]
PGS R2 (no covariates): 0.00472 [-0.00221, 0.01166]
Incremental R2 (full-covars): 0.00423
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019047 PGS003945
(INI30220)
PSS011154|
African Ancestry|
1,154 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil percentage : 0.00436 [-0.00302, 0.01174]
PGS R2 (no covariates): 0.002 [-0.00301, 0.007]
Incremental R2 (full-covars): 0.00188
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019048 PGS003945
(INI30220)
PSS011168|
Multi-ancestry (excluding European)|
7,732 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil percentage : 0.02293 [0.01645, 0.02941]
PGS R2 (no covariates): 0.01249 [0.00766, 0.01732]
Incremental R2 (full-covars): 0.01169
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019045 PGS003945
(INI30220)
PSS011110|
European Ancestry|
2,810 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Basophil percentage : 0.02094 [0.01063, 0.03125]
PGS R2 (no covariates): 0.01757 [0.00809, 0.02705]
Incremental R2 (full-covars): 0.01716
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019049 PGS003946
(INI30240)
PSS011141|
European Ancestry|
64,860 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte percentage : 0.0298 [0.02728, 0.03233]
PGS R2 (no covariates): 0.02838 [0.02592, 0.03085]
Incremental R2 (full-covars): 0.02829
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019050 PGS003946
(INI30240)
PSS011099|
European Ancestry|
2,770 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte percentage : 0.07465 [0.05625, 0.09305]
PGS R2 (no covariates): 0.06854 [0.05079, 0.08629]
Incremental R2 (full-covars): 0.06923
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019051 PGS003946
(INI30240)
PSS011111|
South Asian Ancestry|
1,393 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte percentage : 0.08898 [0.06142, 0.11654]
PGS R2 (no covariates): 0.08201 [0.05535, 0.10867]
Incremental R2 (full-covars): 0.07867
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019052 PGS003946
(INI30240)
PSS011153|
African Ancestry|
1,125 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte percentage : 0.01247 [0.00009, 0.02484]
PGS R2 (no covariates): 0.01579 [0.00191, 0.02967]
Incremental R2 (full-covars): 0.012
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019053 PGS003946
(INI30240)
PSS011169|
Multi-ancestry (excluding European)|
7,578 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte percentage : 0.04153 [0.03298, 0.05009]
PGS R2 (no covariates): 0.03618 [0.02815, 0.04421]
Incremental R2 (full-covars): 0.03446
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019054 PGS003947
(INI30250)
PSS011140|
European Ancestry|
64,861 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte count : 0.0537 [0.0504, 0.057]
PGS R2 (no covariates): 0.04073 [0.03782, 0.04365]
Incremental R2 (full-covars): 0.04072
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019056 PGS003947
(INI30250)
PSS011111|
South Asian Ancestry|
1,393 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte count : 0.09735 [0.06879, 0.12592]
PGS R2 (no covariates): 0.07127 [0.04612, 0.09641]
Incremental R2 (full-covars): 0.06906
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019057 PGS003947
(INI30250)
PSS011153|
African Ancestry|
1,125 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte count : 0.02713 [0.00914, 0.04511]
PGS R2 (no covariates): 0.01461 [0.00124, 0.02797]
Incremental R2 (full-covars): 0.01527
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019058 PGS003947
(INI30250)
PSS011169|
Multi-ancestry (excluding European)|
7,578 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte count : 0.05468 [0.045, 0.06436]
PGS R2 (no covariates): 0.03553 [0.02757, 0.04349]
Incremental R2 (full-covars): 0.03303
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019055 PGS003947
(INI30250)
PSS011099|
European Ancestry|
2,770 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Reticulocyte count : 0.10144 [0.08061, 0.12226]
PGS R2 (no covariates): 0.07084 [0.05284, 0.08884]
Incremental R2 (full-covars): 0.07225
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019059 PGS003948
(INI30260)
PSS011140|
European Ancestry|
64,861 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean reticulocyte volume : 0.16087 [0.1558, 0.16594]
PGS R2 (no covariates): 0.14603 [0.14111, 0.15095]
Incremental R2 (full-covars): 0.14515
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019060 PGS003948
(INI30260)
PSS011099|
European Ancestry|
2,770 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean reticulocyte volume : 0.17217 [0.14717, 0.19717]
PGS R2 (no covariates): 0.14414 [0.1205, 0.16779]
Incremental R2 (full-covars): 0.14281
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019061 PGS003948
(INI30260)
PSS011111|
South Asian Ancestry|
1,393 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean reticulocyte volume : 0.13781 [0.10535, 0.17027]
PGS R2 (no covariates): 0.11019 [0.08024, 0.14015]
Incremental R2 (full-covars): 0.10391
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019062 PGS003948
(INI30260)
PSS011152|
African Ancestry|
1,124 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean reticulocyte volume : 0.03874 [0.01751, 0.05997]
PGS R2 (no covariates): 0.03349 [0.01364, 0.05333]
Incremental R2 (full-covars): 0.033
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019063 PGS003948
(INI30260)
PSS011169|
Multi-ancestry (excluding European)|
7,578 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean reticulocyte volume : 0.15509 [0.14052, 0.16966]
PGS R2 (no covariates): 0.13046 [0.11671, 0.14422]
Incremental R2 (full-covars): 0.11887
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019064 PGS003949
(INI30270)
PSS011143|
European Ancestry|
64,816 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean sphered cell volume : 0.16403 [0.15893, 0.16913]
PGS R2 (no covariates): 0.15331 [0.14832, 0.15831]
Incremental R2 (full-covars): 0.15179
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019065 PGS003949
(INI30270)
PSS011100|
European Ancestry|
2,768 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean sphered cell volume : 0.17891 [0.15363, 0.20418]
PGS R2 (no covariates): 0.15547 [0.13123, 0.1797]
Incremental R2 (full-covars): 0.15478
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019066 PGS003949
(INI30270)
PSS011111|
South Asian Ancestry|
1,393 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean sphered cell volume : 0.11613 [0.08558, 0.14667]
PGS R2 (no covariates): 0.10275 [0.07358, 0.13192]
Incremental R2 (full-covars): 0.09928
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019067 PGS003949
(INI30270)
PSS011153|
African Ancestry|
1,125 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean sphered cell volume : 0.03373 [0.01382, 0.05365]
PGS R2 (no covariates): 0.03281 [0.01315, 0.05248]
Incremental R2 (full-covars): 0.03191
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019068 PGS003949
(INI30270)
PSS011170|
Multi-ancestry (excluding European)|
7,574 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Mean sphered cell volume : 0.16365 [0.14884, 0.17847]
PGS R2 (no covariates): 0.13716 [0.12317, 0.15116]
Incremental R2 (full-covars): 0.12494
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019069 PGS003950
(INI30280)
PSS011143|
European Ancestry|
64,816 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.10325 [0.09891, 0.10759]
PGS R2 (no covariates): 0.09279 [0.08863, 0.09695]
Incremental R2 (full-covars): 0.09226
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019070 PGS003950
(INI30280)
PSS011100|
European Ancestry|
2,768 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.09801 [0.07746, 0.11857]
PGS R2 (no covariates): 0.09403 [0.07381, 0.11425]
Incremental R2 (full-covars): 0.09203
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019071 PGS003950
(INI30280)
PSS011111|
South Asian Ancestry|
1,393 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.06095 [0.03744, 0.08446]
PGS R2 (no covariates): 0.05417 [0.03184, 0.07649]
Incremental R2 (full-covars): 0.05046
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019072 PGS003950
(INI30280)
PSS011152|
African Ancestry|
1,124 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.04778 [0.02442, 0.07113]
PGS R2 (no covariates): 0.03953 [0.0181, 0.06096]
Incremental R2 (full-covars): 0.0407
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019073 PGS003950
(INI30280)
PSS011170|
Multi-ancestry (excluding European)|
7,574 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.10912 [0.09624, 0.12201]
PGS R2 (no covariates): 0.08182 [0.07032, 0.09332]
Incremental R2 (full-covars): 0.08036
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019075 PGS003951
(INI30290)
PSS011100|
European Ancestry|
2,768 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte percentage : 0.10452 [0.08345, 0.12558]
PGS R2 (no covariates): 0.09885 [0.07823, 0.11947]
Incremental R2 (full-covars): 0.09847
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019076 PGS003951
(INI30290)
PSS011111|
South Asian Ancestry|
1,393 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte percentage : 0.09744 [0.06887, 0.12601]
PGS R2 (no covariates): 0.08757 [0.06019, 0.11496]
Incremental R2 (full-covars): 0.08129
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019077 PGS003951
(INI30290)
PSS011153|
African Ancestry|
1,125 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte percentage : 0.02997 [0.01112, 0.04881]
PGS R2 (no covariates): 0.03101 [0.01186, 0.05016]
Incremental R2 (full-covars): 0.0295
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019078 PGS003951
(INI30290)
PSS011170|
Multi-ancestry (excluding European)|
7,574 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte percentage : 0.09491 [0.0827, 0.10712]
PGS R2 (no covariates): 0.08288 [0.07132, 0.09444]
Incremental R2 (full-covars): 0.07762
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019074 PGS003951
(INI30290)
PSS011143|
European Ancestry|
64,816 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte percentage : 0.01834 [0.01634, 0.02034]
PGS R2 (no covariates): 0.01717 [0.01523, 0.01911]
Incremental R2 (full-covars): 0.01712
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019079 PGS003952
(INI30300)
PSS011143|
European Ancestry|
64,816 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte count : 0.13075 [0.12601, 0.13548]
PGS R2 (no covariates): 0.11335 [0.10885, 0.11784]
Incremental R2 (full-covars): 0.11327
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019080 PGS003952
(INI30300)
PSS011100|
European Ancestry|
2,768 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte count : 0.14122 [0.11773, 0.16471]
PGS R2 (no covariates): 0.12176 [0.09946, 0.14407]
Incremental R2 (full-covars): 0.12235
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019081 PGS003952
(INI30300)
PSS011111|
South Asian Ancestry|
1,393 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte count : 0.11255 [0.08236, 0.14275]
PGS R2 (no covariates): 0.0909 [0.0631, 0.1187]
Incremental R2 (full-covars): 0.08654
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019082 PGS003952
(INI30300)
PSS011153|
African Ancestry|
1,125 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte count : 0.04777 [0.02441, 0.07112]
PGS R2 (no covariates): 0.04026 [0.01865, 0.06188]
Incremental R2 (full-covars): 0.04027
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019083 PGS003952
(INI30300)
PSS011170|
Multi-ancestry (excluding European)|
7,574 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: High light scatter reticulocyte count : 0.12479 [0.11125, 0.13833]
PGS R2 (no covariates): 0.09343 [0.0813, 0.10557]
Incremental R2 (full-covars): 0.08525
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019653 PGS003987
(dbslmm.auto.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.0202 [0.00297807, 0.03742271] : 0.00041 [0.00000887, 0.00140046] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019654 PGS003987
(dbslmm.auto.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.1522 [0.14172414, 0.1626768] : 0.02316 [0.02008573, 0.02646374] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019655 PGS003987
(dbslmm.auto.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.14804 [0.12730836, 0.16876192] : 0.02191 [0.01620742, 0.02848058] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019656 PGS003987
(dbslmm.auto.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.18031 [0.17393503, 0.18668242] : 0.0345 [0.03209972, 0.0369772] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019681 PGS004003
(lassosum.auto.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.01939 [0.00216552, 0.03661071] : 0.00038 [0.00000469, 0.00134034] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019682 PGS004003
(lassosum.auto.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.15659 [0.14612563, 0.16706373] : 0.02452 [0.0213527, 0.02791029] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019683 PGS004003
(lassosum.auto.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.1469 [0.12616468, 0.16762536] : 0.02158 [0.01591753, 0.02809826] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019684 PGS004003
(lassosum.auto.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.18516 [0.17877662, 0.19153954] : 0.03622 [0.03376864, 0.03876225] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019665 PGS004029
(ldpred2.auto.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.03102 [0.0137992, 0.0482343] : 0.00096 [0.00019, 0.00232655] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019666 PGS004029
(ldpred2.auto.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.11223 [0.10170135, 0.12276705] : 0.0126 [0.01034316, 0.01507175] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019667 PGS004029
(ldpred2.auto.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.10588 [0.08503512, 0.12671491] : 0.01121 [0.00723097, 0.01605667] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019668 PGS004029
(ldpred2.auto.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.13529 [0.12882048, 0.14176166] : 0.01914 [0.01735574, 0.02101798] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019641 PGS004044
(ldpred2.CV.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.02666 [0.00943679, 0.04387621] : 0.00071 [0.0000891, 0.00192512] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019642 PGS004044
(ldpred2.CV.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.16248 [0.1520189, 0.17293684] : 0.0264 [0.02310974, 0.02990715] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019643 PGS004044
(ldpred2.CV.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.15314 [0.13242664, 0.17384762] : 0.02345 [0.01753681, 0.030223] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019644 PGS004044
(ldpred2.CV.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.19178 [0.18540806, 0.19815508] : 0.03885 [0.03631164, 0.04147621] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019673 PGS004057
(megaprs.auto.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.02167 [0.00444446, 0.03888804] : 0.00047 [0.0000198, 0.00151228] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019674 PGS004057
(megaprs.auto.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.16342 [0.15296397, 0.17387862] : 0.02671 [0.02339798, 0.03023377] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019675 PGS004057
(megaprs.auto.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.16331 [0.1426289, 0.18398159] : 0.02667 [0.020343, 0.03384922] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019676 PGS004057
(megaprs.auto.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.18961 [0.18324065, 0.1959698] : 0.03811 [0.03559471, 0.04071179] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019669 PGS004073
(megaprs.CV.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.02487 [0.00764872, 0.04208973] : 0.00062 [0.0000585, 0.00177155] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019670 PGS004073
(megaprs.CV.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.16593 [0.15548016, 0.17638591] : 0.02753 [0.02417408, 0.03111199] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019671 PGS004073
(megaprs.CV.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.16274 [0.14205739, 0.18341402] : 0.02648 [0.0201803, 0.0336407] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019672 PGS004073
(megaprs.CV.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.19138 [0.18502304, 0.19774227] : 0.03886 [0.03631892, 0.04148397] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019677 PGS004087
(prscs.auto.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.02279 [0.00556903, 0.04001175] : 0.00052 [0.000031, 0.00160094] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019678 PGS004087
(prscs.auto.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.1563 [0.14582935, 0.16676845] : 0.02443 [0.0212662, 0.02781172] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019679 PGS004087
(prscs.auto.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.15808 [0.13738112, 0.17876949] : 0.02499 [0.01887357, 0.03195853] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019680 PGS004087
(prscs.auto.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.17698 [0.17058817, 0.18336594] : 0.03312 [0.03077336, 0.03555613] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019645 PGS004111
(pt_clump.auto.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.00455 [-0.0126804, 0.0217709] : 2e-05 [0.0, 0.000474] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019646 PGS004111
(pt_clump.auto.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.1122 [0.10166953, 0.12273531] : 0.01259 [0.01033669, 0.01506396] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019647 PGS004111
(pt_clump.auto.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.07796 [0.05706538, 0.09885319] : 0.00608 [0.00325646, 0.00977195] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019648 PGS004111
(pt_clump.auto.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.13494 [0.12849111, 0.14139339] : 0.01916 [0.01737109, 0.02103483] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019649 PGS004127
(pt_clump_nested.CV.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.02027 [0.00304789, 0.03749248] : 0.00041 [0.00000929, 0.00140569] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019650 PGS004127
(pt_clump_nested.CV.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.13414 [0.12363329, 0.14464134] : 0.01799 [0.01528519, 0.02092112] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019652 PGS004127
(pt_clump_nested.CV.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.14619 [0.13975924, 0.15261188] : 0.02258 [0.02063827, 0.02460871] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019651 PGS004127
(pt_clump_nested.CV.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.12036 [0.09955043, 0.14116111] : 0.01449 [0.00991029, 0.01992646] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019661 PGS004141
(sbayesr.auto.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.02812 [0.01089907, 0.04533712] : 0.00079 [0.000119, 0.00205545] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019662 PGS004141
(sbayesr.auto.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.15673 [0.14625874, 0.16719639] : 0.02456 [0.02139162, 0.02795463] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019663 PGS004141
(sbayesr.auto.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.14236 [0.12161776, 0.16310622] : 0.02027 [0.01479088, 0.02660364] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019664 PGS004141
(sbayesr.auto.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.18408 [0.17769293, 0.19046359] : 0.03577 [0.03333553, 0.03829932] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019657 PGS004157
(UKBB_EnsPGS.GCST007954.HbA1c)
PSS011242|
South Asian Ancestry|
12,948 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.035 [0.01778701, 0.05221757] : 0.00123 [0.000316, 0.00272667] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019658 PGS004157
(UKBB_EnsPGS.GCST007954.HbA1c)
PSS011258|
European Ancestry|
34,192 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.17514 [0.16470577, 0.18557774] : 0.03067 [0.02712799, 0.0344391] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019659 PGS004157
(UKBB_EnsPGS.GCST007954.HbA1c)
PSS011286|
South Asian Ancestry|
8,748 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.16507 [0.14440242, 0.18574277] : 0.02725 [0.02085206, 0.03450038] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM019660 PGS004157
(UKBB_EnsPGS.GCST007954.HbA1c)
PSS011272|
European Ancestry|
86,050 individuals
PGP000517 |
Monti R et al. Am J Hum Genet (2024)
Reported Trait: Haemoglobin A1C β: 0.20758 [0.20123038, 0.21391987] : 0.0456 [0.04285908, 0.04843486] 0 beta = sd_trait/sd_pgs = pearson correlation
PPM020452 PGS004337
(X30750.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Glycated haemoglobin (mmol/mol) PGS R2 (no covariates): 0.26245
PPM020456 PGS004341
(X30860.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Total protein (g/L) PGS R2 (no covariates): 0.21416
PPM020460 PGS004345
(X30000.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: White blood cell (leukocyte) count PGS R2 (no covariates): 0.24739
PPM020461 PGS004346
(X30010.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Red blood cell (erythrocyte) count PGS R2 (no covariates): 0.24747
PPM020462 PGS004347
(X30020.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Haemoglobin concentration PGS R2 (no covariates): 0.19005
PPM020463 PGS004348
(X30030.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Haematocrit percentage PGS R2 (no covariates): 0.18557
PPM020464 PGS004349
(X30040.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Mean corpuscular volume PGS R2 (no covariates): 0.31845
PPM020465 PGS004350
(X30050.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Mean corpuscular haemoglobin PGS R2 (no covariates): 0.31917
PPM020466 PGS004351
(X30070.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Red blood cell (erythrocyte) distribution width PGS R2 (no covariates): 0.26452
PPM020467 PGS004352
(X30080.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Platelet count PGS R2 (no covariates): 0.32753
PPM020468 PGS004353
(X30090.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Platelet crit PGS R2 (no covariates): 0.29084
PPM020469 PGS004354
(X30100.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Mean platelet (thrombocyte) volume PGS R2 (no covariates): 0.39954
PPM020470 PGS004355
(X30110.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Platelet distribution width PGS R2 (no covariates): 0.28434
PPM020471 PGS004356
(X30120.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Lymphocyte count PGS R2 (no covariates): 0.25007
PPM020472 PGS004357
(X30130.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Monocyte count PGS R2 (no covariates): 0.26078
PPM020473 PGS004358
(X30140.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Neutrophill count PGS R2 (no covariates): 0.22972
PPM020474 PGS004359
(X30180.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Lymphocyte percentage PGS R2 (no covariates): 0.22005
PPM020475 PGS004360
(X30190.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Monocyte percentage PGS R2 (no covariates): 0.24644
PPM020476 PGS004361
(X30200.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Neutrophill percentage PGS R2 (no covariates): 0.20984
PPM020477 PGS004362
(X30210.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Eosinophill percentage PGS R2 (no covariates): 0.25942
PPM020478 PGS004363
(X30240.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Reticulocyte percentage PGS R2 (no covariates): 0.26292
PPM020479 PGS004364
(X30250.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Reticulocyte count PGS R2 (no covariates): 0.26266
PPM020480 PGS004365
(X30260.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Mean reticulocyte volume PGS R2 (no covariates): 0.26343
PPM020481 PGS004366
(X30270.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Mean sphered cell volume PGS R2 (no covariates): 0.27321
PPM020482 PGS004367
(X30280.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Immature reticulocyte fraction PGS R2 (no covariates): 0.20473
PPM020483 PGS004368
(X30290.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: High light scatter reticulocyte percentage PGS R2 (no covariates): 0.27287
PPM020484 PGS004369
(X30300.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: High light scatter reticulocyte count PGS R2 (no covariates): 0.27177
PPM020697 PGS004582
(PRSice_T1)
PSS011369|
East Asian Ancestry|
818 individuals
PGP000563 |
Yang Z et al. Blood (2023)
Reported Trait: Gestational Thrombocytopenia AUROC: 0.617 : 0.02
PPM020698 PGS004583
(PRSice_T2)
PSS011370|
East Asian Ancestry|
878 individuals
PGP000563 |
Yang Z et al. Blood (2023)
Reported Trait: Gestational Thrombocytopenia AUROC: 0.637 : 0.035
PPM020699 PGS004584
(PRSice_T3)
PSS011371|
East Asian Ancestry|
615 individuals
PGP000563 |
Yang Z et al. Blood (2023)
Reported Trait: Gestational Thrombocytopenia AUROC: 0.637 : 0.057
PPM020926 PGS004701
(a1c_PRSmix_eur)
PSS011478|
European Ancestry|
1,543 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: A1c Incremental R2 (Full model versus model with only covariates): 0.068 [0.044, 0.093] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020927 PGS004702
(a1c_PRSmix_sas)
PSS011479|
South Asian Ancestry|
6,414 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: A1c Incremental R2 (Full model versus model with only covariates): 0.053 [0.042, 0.063] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020928 PGS004703
(a1c_PRSmixPlus_eur)
PSS011478|
European Ancestry|
1,543 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: A1c Incremental R2 (Full model versus model with only covariates): 0.1 [0.071, 0.129] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020929 PGS004704
(a1c_PRSmixPlus_sas)
PSS011479|
South Asian Ancestry|
6,414 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: A1c Incremental R2 (Full model versus model with only covariates): 0.071 [0.059, 0.084] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020952 PGS004727
(Basophils_PRSmix_eur)
PSS011482|
European Ancestry|
3,385 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Basophil count Incremental R2 (Full model versus model with only covariates): 0.014 [0.006, 0.022] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020953 PGS004728
(Basophils_PRSmix_sas)
PSS011463|
South Asian Ancestry|
7,096 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Basophil count Incremental R2 (Full model versus model with only covariates): 0.018 [0.012, 0.024] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020954 PGS004729
(Basophils_PRSmixPlus_eur)
PSS011482|
European Ancestry|
3,385 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Basophil count Incremental R2 (Full model versus model with only covariates): 0.023 [0.013, 0.033] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020955 PGS004730
(Basophils_PRSmixPlus_sas)
PSS011463|
South Asian Ancestry|
7,096 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Basophil count Incremental R2 (Full model versus model with only covariates): 0.03 [0.022, 0.038] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020986 PGS004761
(Eosinophils_PRSmix_eur)
PSS011492|
European Ancestry|
3,464 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Eosinophil count Incremental R2 (Full model versus model with only covariates): 0.097 [0.078, 0.116] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020987 PGS004762
(Eosinophils_PRSmix_sas)
PSS011464|
South Asian Ancestry|
7,056 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Eosinophil count Incremental R2 (Full model versus model with only covariates): 0.091 [0.078, 0.104] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020988 PGS004763
(Eosinophils_PRSmixPlus_eur)
PSS011492|
European Ancestry|
3,464 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Eosinophil count Incremental R2 (Full model versus model with only covariates): 0.103 [0.083, 0.122] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020989 PGS004764
(Eosinophils_PRSmixPlus_sas)
PSS011464|
South Asian Ancestry|
7,056 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Eosinophil count Incremental R2 (Full model versus model with only covariates): 0.098 [0.085, 0.112] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020994 PGS004769
(Hb_PRSmix_eur)
PSS011466|
European Ancestry|
5,325 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Hemoglobin Incremental R2 (Full model versus model with only covariates): 0.041 [0.03, 0.051] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020995 PGS004770
(Hb_PRSmixPlus_eur)
PSS011466|
European Ancestry|
5,325 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Hemoglobin Incremental R2 (Full model versus model with only covariates): 0.044 [0.033, 0.055] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020996 PGS004771
(Hct_PRSmix_eur)
PSS011493|
European Ancestry|
5,174 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Hematocrit Incremental R2 (Full model versus model with only covariates): 0.03 [0.021, 0.039] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020997 PGS004772
(hct_PRSmix_sas)
PSS011494|
South Asian Ancestry|
5,766 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Hematocrit Incremental R2 (Full model versus model with only covariates): 0.016 [0.009, 0.022] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020998 PGS004773
(Hct_PRSmixPlus_eur)
PSS011493|
European Ancestry|
5,174 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Hematocrit Incremental R2 (Full model versus model with only covariates): 0.033 [0.023, 0.042] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020999 PGS004774
(hct_PRSmixPlus_sas)
PSS011494|
South Asian Ancestry|
5,766 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Hematocrit Incremental R2 (Full model versus model with only covariates): 0.017 [0.011, 0.024] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021026 PGS004801
(Monocytes_PRSmix_eur)
PSS011501|
European Ancestry|
3,587 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Monocyte count Incremental R2 (Full model versus model with only covariates): 0.109 [0.09, 0.129] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021027 PGS004802
(Monocytes_PRSmix_sas)
PSS011467|
South Asian Ancestry|
7,098 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Monocyte count Incremental R2 (Full model versus model with only covariates): 0.13 [0.115, 0.144] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021028 PGS004803
(Monocytes_PRSmixPlus_eur)
PSS011501|
European Ancestry|
3,587 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Monocyte count Incremental R2 (Full model versus model with only covariates): 0.117 [0.097, 0.137] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021029 PGS004804
(Monocytes_PRSmixPlus_sas)
PSS011467|
South Asian Ancestry|
7,098 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Monocyte count Incremental R2 (Full model versus model with only covariates): 0.138 [0.123, 0.153] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021030 PGS004805
(Neutrophils_PRSmix_eur)
PSS011502|
European Ancestry|
3,495 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Neutrophil count Incremental R2 (Full model versus model with only covariates): 0.057 [0.042, 0.072] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021031 PGS004806
(Neutrophils_PRSmix_sas)
PSS011468|
South Asian Ancestry|
7,099 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Neutrophil count Incremental R2 (Full model versus model with only covariates): 0.05 [0.04, 0.06] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021032 PGS004807
(Neutrophils_PRSmixPlus_eur)
PSS011502|
European Ancestry|
3,495 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Neutrophil count Incremental R2 (Full model versus model with only covariates): 0.065 [0.049, 0.081] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021033 PGS004808
(Neutrophils_PRSmixPlus_sas)
PSS011468|
South Asian Ancestry|
7,099 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Neutrophil count Incremental R2 (Full model versus model with only covariates): 0.055 [0.045, 0.066] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021036 PGS004811
(Platelets_PRSmix_eur)
PSS011470|
European Ancestry|
5,341 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Platelet count Incremental R2 (Full model versus model with only covariates): 0.135 [0.118, 0.152] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021037 PGS004812
(Platelets_PRSmix_sas)
PSS011471|
South Asian Ancestry|
7,072 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Platelet count Incremental R2 (Full model versus model with only covariates): 0.13 [0.115, 0.144] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021038 PGS004813
(Platelets_PRSmixPlus_eur)
PSS011470|
European Ancestry|
5,341 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Platelet count Incremental R2 (Full model versus model with only covariates): 0.139 [0.121, 0.156] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021039 PGS004814
(Platelets_PRSmixPlus_sas)
PSS011471|
South Asian Ancestry|
7,072 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Platelet count Incremental R2 (Full model versus model with only covariates): 0.135 [0.12, 0.15] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021046 PGS004821
(RBC_PRSmix_eur)
PSS011503|
European Ancestry|
5,163 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Red blood count Incremental R2 (Full model versus model with only covariates): 0.08 [0.066, 0.094] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021047 PGS004822
(RBC_PRSmix_sas)
PSS011472|
South Asian Ancestry|
7,055 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Red blood count Incremental R2 (Full model versus model with only covariates): 0.039 [0.031, 0.048] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021048 PGS004823
(RBC_PRSmixPlus_eur)
PSS011503|
European Ancestry|
5,163 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Red blood count Incremental R2 (Full model versus model with only covariates): 0.083 [0.068, 0.097] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021049 PGS004824
(RBC_PRSmixPlus_sas)
PSS011472|
South Asian Ancestry|
7,055 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Red blood count Incremental R2 (Full model versus model with only covariates): 0.041 [0.031, 0.05] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021050 PGS004825
(RDW_PRSmix_eur)
PSS011504|
European Ancestry|
5,060 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Red cell distribution width Incremental R2 (Full model versus model with only covariates): 0.076 [0.062, 0.09] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021051 PGS004826
(RDW_PRSmix_sas)
PSS011473|
South Asian Ancestry|
6,847 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Red cell distribution width Incremental R2 (Full model versus model with only covariates): 0.04 [0.031, 0.049] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021052 PGS004827
(RDW_PRSmixPlus_eur)
PSS011504|
European Ancestry|
5,060 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Red cell distribution width Incremental R2 (Full model versus model with only covariates): 0.093 [0.078, 0.108] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021053 PGS004828
(RDW_PRSmixPlus_sas)
PSS011473|
South Asian Ancestry|
6,847 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Red cell distribution width Incremental R2 (Full model versus model with only covariates): 0.047 [0.037, 0.056] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021074 PGS004849
(Total_protein_PRSmix_sas)
PSS011476|
South Asian Ancestry|
6,486 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Total protein measurement Incremental R2 (Full model versus model with only covariates): 0.058 [0.047, 0.069] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021075 PGS004850
(Total_protein_PRSmixPlus_sas)
PSS011476|
South Asian Ancestry|
6,486 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Total protein measurement Incremental R2 (Full model versus model with only covariates): 0.059 [0.048, 0.07] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021076 PGS004851
(TotalProtein_PRSmix_eur)
PSS011475|
European Ancestry|
5,330 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Total protein measurement Incremental R2 (Full model versus model with only covariates): 0.04 [0.03, 0.051] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021077 PGS004852
(TotalProtein_PRSmixPlus_eur)
PSS011475|
European Ancestry|
5,330 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Total protein measurement Incremental R2 (Full model versus model with only covariates): 0.041 [0.03, 0.051] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021080 PGS004855
(WBC_PRSmix_eur)
PSS011512|
European Ancestry|
5,118 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: White blood count Incremental R2 (Full model versus model with only covariates): 0.075 [0.061, 0.089] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021081 PGS004856
(WBC_PRSmix_sas)
PSS011477|
South Asian Ancestry|
7,058 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: White blood count Incremental R2 (Full model versus model with only covariates): 0.084 [0.072, 0.097] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021082 PGS004857
(WBC_PRSmixPlus_eur)
PSS011512|
European Ancestry|
5,118 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: White blood count Incremental R2 (Full model versus model with only covariates): 0.085 [0.071, 0.1] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021083 PGS004858
(WBC_PRSmixPlus_sas)
PSS011477|
South Asian Ancestry|
7,058 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: White blood count Incremental R2 (Full model versus model with only covariates): 0.089 [0.076, 0.102] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM022079 PGS004956
(Hemoglobin_Mean_INT_ldpred_AFRss_afrld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.053 [0.04, 0.06] : 0.003 score previously adjusted for age, sex, 20 PCs
PPM022091 PGS004956
(Hemoglobin_Mean_INT_ldpred_AFRss_afrld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.049 [0.03, 0.07] : 0.003 score previously adjusted for age, sex, 20 PCs
PPM022085 PGS004956
(Hemoglobin_Mean_INT_ldpred_AFRss_afrld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.086 [0.07, 0.11] : 0.008 score previously adjusted for age, sex, 20 PCs
PPM022081 PGS004957
(Hemoglobin_Mean_INT_ldpred_EURss_eurld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.102 [0.09, 0.11] : 0.012 score previously adjusted for age, sex, 20 PCs
PPM022087 PGS004957
(Hemoglobin_Mean_INT_ldpred_EURss_eurld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.031 [0.01, 0.05] : 0.001 score previously adjusted for age, sex, 20 PCs
PPM022093 PGS004957
(Hemoglobin_Mean_INT_ldpred_EURss_eurld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.07 [0.05, 0.09] : 0.006 score previously adjusted for age, sex, 20 PCs
PPM022080 PGS004958
(Hemoglobin_Mean_INT_ldpred_HISss_amrld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.052 [0.04, 0.06] : 0.003 score previously adjusted for age, sex, 20 PCs
PPM022086 PGS004958
(Hemoglobin_Mean_INT_ldpred_HISss_amrld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.036 [0.02, 0.06] : 0.001 score previously adjusted for age, sex, 20 PCs
PPM022092 PGS004958
(Hemoglobin_Mean_INT_ldpred_HISss_amrld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.055 [0.03, 0.08] : 0.003 score previously adjusted for age, sex, 20 PCs
PPM022076 PGS004959
(Hemoglobin_Mean_INT_ldpred_METAss_afrld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.114 [0.1, 0.12] : 0.015 score previously adjusted for age, sex, 20 PCs
PPM022082 PGS004959
(Hemoglobin_Mean_INT_ldpred_METAss_afrld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.074 [0.05, 0.09] : 0.006 score previously adjusted for age, sex, 20 PCs
PPM022088 PGS004959
(Hemoglobin_Mean_INT_ldpred_METAss_afrld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.085 [0.06, 0.11] : 0.008 score previously adjusted for age, sex, 20 PCs
PPM022077 PGS004960
(Hemoglobin_Mean_INT_ldpred_METAss_amrld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.117 [0.11, 0.13] : 0.016 score previously adjusted for age, sex, 20 PCs
PPM022083 PGS004960
(Hemoglobin_Mean_INT_ldpred_METAss_amrld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.076 [0.06, 0.1] : 0.007 score previously adjusted for age, sex, 20 PCs
PPM022089 PGS004960
(Hemoglobin_Mean_INT_ldpred_METAss_amrld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.086 [0.06, 0.11] : 0.009 score previously adjusted for age, sex, 20 PCs
PPM022078 PGS004961
(Hemoglobin_Mean_INT_ldpred_METAss_eurld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.129 [0.12, 0.14] : 0.019 score previously adjusted for age, sex, 20 PCs
PPM022084 PGS004961
(Hemoglobin_Mean_INT_ldpred_METAss_eurld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.087 [0.07, 0.11] : 0.009 score previously adjusted for age, sex, 20 PCs
PPM022090 PGS004961
(Hemoglobin_Mean_INT_ldpred_METAss_eurld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.082 [0.06, 0.11] : 0.008 score previously adjusted for age, sex, 20 PCs
PPM021975 PGS004962
(Hemoglobin_Mean_INT_prscs_AFRss_afrld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.044 [0.03, 0.05] : 0.002 score previously adjusted for age, sex, 20 PCs
PPM021982 PGS004962
(Hemoglobin_Mean_INT_prscs_AFRss_afrld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.065 [0.05, 0.08] : 0.005 score previously adjusted for age, sex, 20 PCs
PPM021989 PGS004962
(Hemoglobin_Mean_INT_prscs_AFRss_afrld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.048 [0.02, 0.07] : 0.003 score previously adjusted for age, sex, 20 PCs
PPM021977 PGS004963
(Hemoglobin_Mean_INT_prscs_EURss_eurld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.134 [0.12, 0.14] : 0.02 score previously adjusted for age, sex, 20 PCs
PPM021984 PGS004963
(Hemoglobin_Mean_INT_prscs_EURss_eurld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.04 [0.02, 0.06] : 0.002 score previously adjusted for age, sex, 20 PCs
PPM021991 PGS004963
(Hemoglobin_Mean_INT_prscs_EURss_eurld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.093 [0.07, 0.12] : 0.01 score previously adjusted for age, sex, 20 PCs
PPM021976 PGS004964
(Hemoglobin_Mean_INT_prscs_HISss_amrld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.053 [0.04, 0.06] : 0.003 score previously adjusted for age, sex, 20 PCs
PPM021983 PGS004964
(Hemoglobin_Mean_INT_prscs_HISss_amrld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.039 [0.02, 0.06] : 0.002 score previously adjusted for age, sex, 20 PCs
PPM021990 PGS004964
(Hemoglobin_Mean_INT_prscs_HISss_amrld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.05 [0.03, 0.07] : 0.003 score previously adjusted for age, sex, 20 PCs
PPM021972 PGS004965
(Hemoglobin_Mean_INT_prscs_METAss_afrld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.114 [0.1, 0.12] : 0.015 score previously adjusted for age, sex, 20 PCs
PPM021986 PGS004965
(Hemoglobin_Mean_INT_prscs_METAss_afrld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.089 [0.07, 0.11] : 0.009 score previously adjusted for age, sex, 20 PCs
PPM021979 PGS004965
(Hemoglobin_Mean_INT_prscs_METAss_afrld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.067 [0.05, 0.09] : 0.005 score previously adjusted for age, sex, 20 PCs
PPM021973 PGS004966
(Hemoglobin_Mean_INT_prscs_METAss_amrld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.131 [0.12, 0.14] : 0.019 score previously adjusted for age, sex, 20 PCs
PPM021980 PGS004966
(Hemoglobin_Mean_INT_prscs_METAss_amrld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.096 [0.08, 0.12] : 0.01 score previously adjusted for age, sex, 20 PCs
PPM021987 PGS004966
(Hemoglobin_Mean_INT_prscs_METAss_amrld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.096 [0.07, 0.12] : 0.011 score previously adjusted for age, sex, 20 PCs
PPM021974 PGS004967
(Hemoglobin_Mean_INT_prscs_METAss_eurld)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.135 [0.12, 0.15] : 0.021 score previously adjusted for age, sex, 20 PCs
PPM021981 PGS004967
(Hemoglobin_Mean_INT_prscs_METAss_eurld)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.081 [0.06, 0.1] : 0.007 score previously adjusted for age, sex, 20 PCs
PPM021988 PGS004967
(Hemoglobin_Mean_INT_prscs_METAss_eurld)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.086 [0.06, 0.11] : 0.009 score previously adjusted for age, sex, 20 PCs
PPM021971 PGS004968
(Hemoglobin_Mean_INT_prscsx_METAweight)
PSS011815|
European Ancestry|
28,828 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.139 [0.13, 0.15] : 0.022 score previously adjusted for age, sex, 20 PCs
PPM021978 PGS004968
(Hemoglobin_Mean_INT_prscsx_METAweight)
PSS011795|
African Ancestry|
8,793 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.088 [0.07, 0.11] : 0.009 score previously adjusted for age, sex, 20 PCs
PPM021985 PGS004968
(Hemoglobin_Mean_INT_prscsx_METAweight)
PSS011805|
Hispanic or Latin American Ancestry|
6,376 individuals
PGP000679 |
Gunn S et al. HGG Adv (2024)
Reported Trait: Hemoglobin β: 0.098 [0.07, 0.12] : 0.011 score previously adjusted for age, sex, 20 PCs

Evaluated Samples

PGS Sample Set ID
(PSS)
Phenotype Definitions and Methods Participant Follow-up Time Sample Numbers Age of Study Participants Sample Ancestry Additional Ancestry Description Cohort(s) Additional Sample/Cohort Information
PSS009173 4,001 individuals European Poland (NE Europe) UKB
PSS009174 3,996 individuals European Poland (NE Europe) UKB
PSS009185 4,002 individuals European Poland (NE Europe) UKB
PSS009186 4,001 individuals European Poland (NE Europe) UKB
PSS009191 3,924 individuals European Poland (NE Europe) UKB
PSS010191 2,264 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010192 2,258 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS009207 3,919 individuals European Poland (NE Europe) UKB
PSS009208 3,930 individuals European Poland (NE Europe) UKB
PSS010201 2,264 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS009216 2,282 individuals European Poland (NE Europe) UKB
PSS010202 2,263 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010205 2,221 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS009225 4,002 individuals European Poland (NE Europe) UKB
PSS009228 3,993 individuals European Poland (NE Europe) UKB
PSS009231 3,993 individuals European Poland (NE Europe) UKB
PSS009232 3,992 individuals European Poland (NE Europe) UKB
PSS009233 4,002 individuals European Poland (NE Europe) UKB
PSS009234 4,002 individuals European Poland (NE Europe) UKB
PSS009235 4,002 individuals European Poland (NE Europe) UKB
PSS009236 4,002 individuals European Poland (NE Europe) UKB
PSS010222 1,249 individuals,
48.0 % Male samples
Mean = 58.2 years
Sd = 6.9 years
European Ashkenazi UKB
PSS009239 3,923 individuals European Poland (NE Europe) UKB
PSS010225 2,233 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS009247 3,992 individuals European Poland (NE Europe) UKB
PSS009248 3,963 individuals European Poland (NE Europe) UKB
PSS010234 2,264 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010237 2,256 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010238 2,259 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010239 2,263 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS009254 3,988 individuals European Poland (NE Europe) UKB
PSS010240 2,263 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010241 2,264 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010243 2,264 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS009259 3,593 individuals European Poland (NE Europe) UKB
PSS010245 2,221 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS009261 3,924 individuals European Poland (NE Europe) UKB
PSS010251 2,258 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS009267 3,924 individuals European Poland (NE Europe) UKB
PSS010255 2,263 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010256 2,264 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010257 2,241 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010261 2,256 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010262 2,221 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010266 2,220 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010275 2,329 individuals,
36.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010276 2,315 individuals,
37.0 % Male samples
Mean = 52.5 years
Sd = 8.1 years
African American or Afro-Caribbean Caribbean UKB
PSS010285 2,330 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010286 2,327 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010289 2,282 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS011463 7,096 individuals South Asian G&H
PSS011464 7,056 individuals South Asian G&H
PSS011466 5,325 individuals European AllofUs
PSS011467 7,098 individuals South Asian G&H
PSS011468 7,099 individuals South Asian G&H
PSS011470 5,341 individuals European AllofUs
PSS011471 7,072 individuals South Asian G&H
PSS011472 7,055 individuals South Asian G&H
PSS011473 6,847 individuals South Asian G&H
PSS011475 5,330 individuals European AllofUs
PSS011476 6,486 individuals South Asian G&H
PSS011477 7,058 individuals South Asian G&H
PSS011478 1,543 individuals European AllofUs
PSS010306 1,285 individuals,
40.0 % Male samples
Mean = 52.3 years
Sd = 7.9 years
African American or Afro-Caribbean Caribbean UKB
PSS011479 6,414 individuals South Asian G&H
PSS010309 2,089 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS011482 3,385 individuals European AllofUs
PSS010318 2,330 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS011492 3,464 individuals European AllofUs
PSS011493 5,174 individuals European AllofUs
PSS010321 2,323 individuals,
36.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010322 2,323 individuals,
36.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010323 2,330 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010324 2,330 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010325 2,330 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS011494 5,766 individuals South Asian G&H
PSS010327 2,330 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS011501 3,587 individuals European AllofUs
PSS010329 2,282 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS011502 3,495 individuals European AllofUs
PSS011503 5,163 individuals European AllofUs
PSS011504 5,060 individuals European AllofUs
PSS010335 2,324 individuals,
36.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010339 2,330 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010340 2,329 individuals,
36.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010341 2,285 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS011512 5,118 individuals European AllofUs
PSS010345 2,321 individuals,
36.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010346 2,281 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010350 2,280 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010359 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010360 1,744 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS009377 19,421 individuals European UK (+ Ireland) UKB
PSS009378 19,423 individuals European UK (+ Ireland) UKB
PSS010369 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010370 1,749 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010373 1,711 individuals,
33.0 % Male samples
Mean = 52.4 years
Sd = 7.8 years
East Asian Chinese UKB
PSS009399 19,422 individuals European UK (+ Ireland) UKB
PSS009400 19,392 individuals European UK (+ Ireland) UKB
PSS010390 973 individuals,
38.0 % Male samples
Mean = 52.5 years
Sd = 7.7 years
East Asian Chinese UKB
PSS010393 1,718 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS009411 19,423 individuals European UK (+ Ireland) UKB
PSS009412 19,423 individuals European UK (+ Ireland) UKB
PSS010402 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS009417 19,121 individuals European UK (+ Ireland) UKB
PSS010405 1,748 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010406 1,749 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010407 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010408 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010409 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010411 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010413 1,711 individuals,
33.0 % Male samples
Mean = 52.4 years
Sd = 7.8 years
East Asian Chinese UKB
PSS009433 19,088 individuals European UK (+ Ireland) UKB
PSS009434 19,060 individuals European UK (+ Ireland) UKB
PSS010419 1,749 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010423 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010424 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010425 1,732 individuals,
34.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS009442 11,529 individuals European UK (+ Ireland) UKB
PSS010429 1,748 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010430 1,711 individuals,
33.0 % Male samples
Mean = 52.4 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010434 1,711 individuals,
33.0 % Male samples
Mean = 52.4 years
Sd = 7.8 years
East Asian Chinese UKB
PSS009451 19,419 individuals European UK (+ Ireland) UKB
PSS009454 19,387 individuals European UK (+ Ireland) UKB
PSS009457 19,384 individuals European UK (+ Ireland) UKB
PSS009458 19,382 individuals European UK (+ Ireland) UKB
PSS009459 19,422 individuals European UK (+ Ireland) UKB
PSS009460 19,422 individuals European UK (+ Ireland) UKB
PSS009461 19,423 individuals European UK (+ Ireland) UKB
PSS009462 19,423 individuals European UK (+ Ireland) UKB
PSS010443 6,026 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010444 5,983 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS009465 19,117 individuals European UK (+ Ireland) UKB
PSS010453 6,026 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010454 6,025 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010457 5,888 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS009473 19,383 individuals European UK (+ Ireland) UKB
PSS009474 19,244 individuals European UK (+ Ireland) UKB
PSS009480 19,359 individuals European UK (+ Ireland) UKB
PSS009485 17,433 individuals European UK (+ Ireland) UKB
PSS009487 19,120 individuals European UK (+ Ireland) UKB
PSS010474 4,192 individuals,
58.0 % Male samples
Mean = 53.4 years
Sd = 8.5 years
South Asian Indian UKB
PSS010477 5,884 individuals,
54.0 % Male samples
Mean = 53.4 years
Sd = 8.4 years
South Asian Indian UKB
PSS009493 19,116 individuals European UK (+ Ireland) UKB
PSS010486 6,026 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010489 6,008 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010490 6,008 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010491 6,024 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010492 6,024 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010493 6,026 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010495 6,026 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010497 5,886 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010503 6,004 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010507 6,026 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010508 6,026 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010509 5,958 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010513 6,003 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010514 5,886 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS010518 5,885 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS003591 6,647 individuals African American or Afro-Caribbean ARIC, BioMe, HANDLS, JHS, MESA
PSS003592 4,441 individuals Sub-Saharan African
(Ugandan)
NR
PSS003593 31,236 individuals East Asian
(Japanese, Chinese, Malay, Han Chinese)
15 cohorts
  • AASC
  • ,BES
  • ,CAGE
  • ,CHNS
  • ,CRC
  • ,KARE
  • ,Living-Biobank
  • ,MESA
  • ,NHAPC
  • ,Nagahama_Study
  • ,SBCS
  • ,SCES
  • ,SIMES
  • ,SP2
  • ,TWSC
PSS003594 61,820 individuals European EPIC, InterAct, LifeLines, METSIM, WGHS
PSS010527 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010528 1,114 individuals,
60.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010537 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010538 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010541 1,097 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010558 659 individuals,
65.0 % Male samples
Mean = 52.0 years
Sd = 7.9 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010561 1,100 individuals,
60.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010570 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010573 1,121 individuals,
60.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010574 1,119 individuals,
60.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010575 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010576 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010577 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010579 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010581 1,097 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010587 1,120 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010591 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010592 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010593 1,114 individuals,
60.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010597 1,117 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010598 1,097 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010602 1,096 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS010611 6,278 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010612 6,263 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010621 6,278 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010622 6,277 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010625 6,144 individuals,
45.0 % Male samples
Mean = 54.4 years
Sd = 8.4 years
European Italian UKB
PSS010642 3,283 individuals,
51.0 % Male samples
Mean = 54.8 years
Sd = 8.4 years
European Italian UKB
PSS010645 6,172 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010654 6,278 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010657 6,264 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010658 6,260 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010659 6,277 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010660 6,277 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010661 6,278 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010663 6,278 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010665 6,143 individuals,
45.0 % Male samples
Mean = 54.4 years
Sd = 8.4 years
European Italian UKB
PSS010671 6,258 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010675 6,276 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010676 6,278 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010677 6,213 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS000704 4,847 individuals African unspecified UKB
PSS000705 1,032 individuals East Asian UKB
PSS000706 22,518 individuals European Non-British White UKB
PSS000707 6,895 individuals South Asian UKB
PSS000708 60,920 individuals European
(British)
UKB
PSS010681 6,254 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS010682 6,144 individuals,
45.0 % Male samples
Mean = 54.4 years
Sd = 8.4 years
European Italian UKB
PSS010686 6,139 individuals,
45.0 % Male samples
Mean = 54.4 years
Sd = 8.4 years
European Italian UKB
PSS010695 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010696 3,651 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010705 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010706 3,680 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010709 3,574 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS000127 39,986 individuals,
50.0 % Male samples
Mean = 43.87 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000128 40,133 individuals,
50.0 % Male samples
Mean = 43.92 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000129 40,276 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000130 40,326 individuals,
49.0 % Male samples
Mean = 43.83 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000131 40,340 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000132 40,329 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000133 40,244 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000134 40,225 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000135 40,227 individuals,
49.0 % Male samples
Mean = 43.85 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000136 39,191 individuals,
50.0 % Male samples
Mean = 43.82 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000137 39,178 individuals,
50.0 % Male samples
Mean = 43.82 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000138 40,108 individuals,
50.0 % Male samples
Mean = 43.85 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000139 40,265 individuals,
50.0 % Male samples
Mean = 43.83 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000140 40,080 individuals,
50.0 % Male samples
Mean = 43.82 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000141 39,177 individuals,
50.0 % Male samples
Mean = 43.82 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000142 39,189 individuals,
50.0 % Male samples
Mean = 43.83 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000143 37,224 individuals,
50.0 % Male samples
Mean = 43.8 years
Range = [18.0, 75.7] years
European INTERVAL
PSS000144 39,138 individuals,
50.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000145 39,190 individuals,
50.0 % Male samples
Mean = 43.83 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000146 37,306 individuals,
49.0 % Male samples
Mean = 43.82 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000147 37,262 individuals,
50.0 % Male samples
Mean = 43.81 years
Range = [18.0, 75.8] years
European INTERVAL
PSS000148 38,939 individuals,
49.0 % Male samples
Mean = 43.75 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000149 40,262 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000150 40,253 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000151 40,286 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000152 40,466 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS000153 80,944 individuals,
46.0 % Male samples
Mean = 57.21 years
Range = [40.05, 70.91] years
European UKB
PSS000154 80,906 individuals,
46.0 % Male samples
Mean = 57.2 years
Range = [40.18, 72.91] years
European UKB
PSS000155 81,294 individuals,
46.0 % Male samples
Mean = 57.2 years
Range = [39.98, 72.44] years
European UKB
PSS000156 81,283 individuals,
45.0 % Male samples
Mean = 57.19 years
Range = [38.87, 71.1] years
European UKB
PSS000768 984 individuals East Asian UKB
PSS000769 21,516 individuals European Non-British White UKB
PSS000157 81,622 individuals,
46.0 % Male samples
Mean = 57.26 years
Range = [40.11, 72.44] years
European UKB
PSS000158 81,548 individuals,
46.0 % Male samples
Mean = 57.23 years
Range = [40.16, 72.91] years
European UKB
PSS000159 80,067 individuals,
46.0 % Male samples
Mean = 57.2 years
Range = [39.91, 70.52] years
European UKB
PSS000160 80,088 individuals,
46.0 % Male samples
Mean = 57.19 years
Range = [39.66, 72.91] years
European UKB
PSS000161 79,282 individuals,
46.0 % Male samples
Mean = 57.28 years
Range = [39.91, 70.99] years
European UKB
PSS000162 81,455 individuals,
45.0 % Male samples
Mean = 57.23 years
Range = [40.05, 71.07] years
European UKB
PSS000163 81,464 individuals,
46.0 % Male samples
Mean = 57.22 years
Range = [40.17, 71.1] years
European UKB
PSS000164 81,303 individuals,
46.0 % Male samples
Mean = 57.27 years
Range = [39.99, 70.44] years
European UKB
PSS000165 81,570 individuals,
46.0 % Male samples
Mean = 57.27 years
Range = [39.98, 70.7] years
European UKB
PSS000166 81,431 individuals,
46.0 % Male samples
Mean = 57.26 years
Range = [40.15, 71.1] years
European UKB
PSS000167 80,799 individuals,
46.0 % Male samples
Mean = 57.23 years
Range = [39.66, 70.7] years
European UKB
PSS000168 80,627 individuals,
46.0 % Male samples
Mean = 57.23 years
Range = [40.19, 71.1] years
European UKB
PSS000169 78,320 individuals,
46.0 % Male samples
Mean = 57.26 years
Range = [38.87, 70.99] years
European UKB
PSS000170 81,358 individuals,
45.0 % Male samples
Mean = 57.19 years
Range = [40.19, 72.44] years
European UKB
PSS000171 81,423 individuals,
46.0 % Male samples
Mean = 57.25 years
Range = [39.99, 70.5] years
European UKB
PSS000172 78,161 individuals,
46.0 % Male samples
Mean = 57.2 years
Range = [39.66, 72.91] years
European UKB
PSS000173 78,290 individuals,
46.0 % Male samples
Mean = 57.2 years
Range = [39.99, 70.53] years
European UKB
PSS000174 78,246 individuals,
46.0 % Male samples
Mean = 57.23 years
Range = [39.98, 70.43] years
European UKB
PSS000175 81,614 individuals,
45.0 % Male samples
Mean = 57.26 years
Range = [39.99, 70.99] years
European UKB
PSS000176 79,344 individuals,
46.0 % Male samples
Mean = 57.29 years
Range = [39.66, 72.91] years
European UKB
PSS000177 79,362 individuals,
46.0 % Male samples
Mean = 57.22 years
Range = [39.66, 72.91] years
European UKB
PSS000178 81,606 individuals,
46.0 % Male samples
Mean = 57.23 years
Range = [38.87, 70.97] years
European UKB
PSS010759 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010760 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010761 3,634 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010765 3,652 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010766 3,574 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010770 3,573 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010779 3,990 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010780 3,985 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010789 3,991 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010790 3,990 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS000817 1,995 individuals European Participants self-identifying as white MESA
PSS010793 3,913 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010810 2,277 individuals,
42.0 % Male samples
Mean = 54.5 years
Sd = 7.4 years
European Polish UKB
PSS010813 3,920 individuals,
38.0 % Male samples
Mean = 54.4 years
Sd = 7.5 years
European Polish UKB
PSS010822 3,991 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010825 3,982 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010826 3,981 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010827 3,991 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010828 3,991 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010829 3,991 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010831 3,991 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010833 3,912 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010839 3,981 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010843 3,989 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010844 3,991 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010845 3,952 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010849 3,977 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010850 3,913 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS010854 3,913 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS007821 2,343 individuals African American or Afro-Caribbean Carribean UKB
PSS007822 2,342 individuals African American or Afro-Caribbean Carribean UKB
PSS010863 19,416 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010864 19,389 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS000234 Incident type 2 diabtes defined as fasting glucose >= 7 mmol/L, 2 hour glucose >= 11.1 mmol/L, antidiabetic medication use, or a physician diagnosis of type 2 diabetes Range = [10.0, 15.0] years
[
  • 262 cases
  • , 1,644 controls
]
,
37.93 % Male samples
Mean = 57.4 years
Sd = 7.43 years
African unspecified ARIC, MESA Partial overlap with discovery GWAS
PSS000235 Incident type 2 diabtes defined as fasting glucose >= 7 mmol/L, 2 hour glucose >= 11.1 mmol/L, antidiabetic medication use, or a physician diagnosis of type 2 diabetes Range = [10.0, 15.0] years
[
  • 2,391 cases
  • , 2,682 controls
]
,
47.45 % Male samples
Mean = 55.6 years
Sd = 7.37 years
East Asian MESA, SCHS Partial overlap with discovery GWAS
PSS000236 Incident type 2 diabtes defined as fasting glucose >= 7 mmol/L, 2 hour glucose >= 11.1 mmol/L, antidiabetic medication use, or a physician diagnosis of type 2 diabetes Range = [10.0, 15.0] years
[
  • 13,145 cases
  • , 24,212 controls
]
,
43.47 % Male samples
Mean = 54.63 years
Sd = 8.27 years
European ARIC, FHS, InterAct, MESA Partial overlap with discovery GWAS
PSS010873 19,418 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010874 19,417 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007843 2,342 individuals African American or Afro-Caribbean Carribean UKB
PSS007844 2,328 individuals African American or Afro-Caribbean Carribean UKB
PSS010877 19,116 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007855 2,343 individuals African American or Afro-Caribbean Carribean UKB
PSS007856 2,340 individuals African American or Afro-Caribbean Carribean UKB
PSS010894 11,449 individuals,
50.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007861 2,294 individuals African American or Afro-Caribbean Carribean UKB
PSS010897 19,078 individuals,
46.0 % Male samples
Mean = 56.8 years
Sd = 7.9 years
European white British UKB
PSS010906 19,415 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010909 19,376 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010910 19,374 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007877 2,293 individuals African American or Afro-Caribbean Carribean UKB
PSS007878 2,100 individuals African American or Afro-Caribbean Carribean UKB
PSS010911 19,418 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010912 19,417 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010913 19,418 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010915 19,418 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010917 19,111 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007886 1,291 individuals African American or Afro-Caribbean Carribean UKB
PSS010923 19,370 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010927 19,414 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010928 19,418 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007895 2,343 individuals African American or Afro-Caribbean Carribean UKB
PSS010929 19,237 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007898 2,337 individuals African American or Afro-Caribbean Carribean UKB
PSS010933 19,342 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS010934 19,112 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007901 2,336 individuals African American or Afro-Caribbean Carribean UKB
PSS007902 2,336 individuals African American or Afro-Caribbean Carribean UKB
PSS007903 2,343 individuals African American or Afro-Caribbean Carribean UKB
PSS007904 2,343 individuals African American or Afro-Caribbean Carribean UKB
PSS007905 2,343 individuals African American or Afro-Caribbean Carribean UKB
PSS007906 2,343 individuals African American or Afro-Caribbean Carribean UKB
PSS010938 19,109 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007909 2,294 individuals African American or Afro-Caribbean Carribean UKB
PSS007917 2,337 individuals African American or Afro-Caribbean Carribean UKB
PSS007918 2,298 individuals African American or Afro-Caribbean Carribean UKB
PSS008821 6,293 individuals European Italy (South Europe) UKB
PSS000911 13,989 individuals Greater Middle Eastern (Middle Eastern, North African or Persian)
(Qatari)
QBB
PSS007924 2,334 individuals African American or Afro-Caribbean Carribean UKB
PSS007929 2,161 individuals African American or Afro-Caribbean Carribean UKB
PSS007931 2,293 individuals African American or Afro-Caribbean Carribean UKB
PSS007937 2,292 individuals African American or Afro-Caribbean Carribean UKB
PSS011795 8,793 individuals African American or Afro-Caribbean AllofUs
PSS011805 6,376 individuals Hispanic or Latin American AllofUs
PSS011815 28,828 individuals European AllofUs
PSS009743 6,017 individuals African unspecified UKB
PSS009744 880 individuals East Asian UKB
PSS009745 41,583 individuals European Non-British European UKB
PSS009746 7,446 individuals South Asian UKB
PSS009767 4,803 individuals African unspecified UKB
PSS009768 841 individuals East Asian UKB
PSS009769 38,991 individuals European Non-British European UKB
PSS009770 6,861 individuals South Asian UKB
PSS008035 1,762 individuals East Asian China (East Asia) UKB
PSS008036 1,762 individuals East Asian China (East Asia) UKB
PSS009775 5,976 individuals African unspecified UKB
PSS009776 881 individuals East Asian UKB
PSS009777 41,231 individuals European Non-British European UKB
PSS009778 7,560 individuals South Asian UKB
PSS008056 1,762 individuals East Asian China (East Asia) UKB
PSS008057 1,757 individuals East Asian China (East Asia) UKB
PSS009795 6,135 individuals African unspecified UKB
PSS009796 895 individuals East Asian UKB
PSS009797 41,973 individuals European Non-British European UKB
PSS009798 7,737 individuals South Asian UKB
PSS009799 5,952 individuals African unspecified UKB
PSS009800 845 individuals East Asian UKB
PSS009801 41,826 individuals European Non-British European UKB
PSS009802 7,485 individuals South Asian UKB
PSS009803 6,153 individuals African unspecified UKB
PSS008068 1,762 individuals East Asian China (East Asia) UKB
PSS008069 1,762 individuals East Asian China (East Asia) UKB
PSS009804 892 individuals East Asian UKB
PSS009805 42,078 individuals European Non-British European UKB
PSS009806 7,770 individuals South Asian UKB
PSS009807 6,119 individuals African unspecified UKB
PSS008074 1,722 individuals East Asian China (East Asia) UKB
PSS009808 894 individuals East Asian UKB
PSS009809 41,863 individuals European Non-British European UKB
PSS009810 7,718 individuals South Asian UKB
PSS009815 6,143 individuals African unspecified UKB
PSS009816 895 individuals East Asian UKB
PSS009817 42,007 individuals European Non-British European UKB
PSS009818 7,730 individuals South Asian UKB
PSS009823 6,120 individuals African unspecified UKB
PSS009824 885 individuals East Asian UKB
PSS009825 42,065 individuals European Non-British European UKB
PSS008090 1,715 individuals East Asian China (East Asia) UKB
PSS008091 1,731 individuals East Asian China (East Asia) UKB
PSS009826 7,707 individuals South Asian UKB
PSS009827 5,990 individuals African unspecified UKB
PSS009828 888 individuals East Asian UKB
PSS009829 41,837 individuals European Non-British European UKB
PSS009830 7,623 individuals South Asian UKB
PSS008099 983 individuals East Asian China (East Asia) UKB
PSS008108 1,762 individuals East Asian China (East Asia) UKB
PSS008111 1,761 individuals East Asian China (East Asia) UKB
PSS008114 1,760 individuals East Asian China (East Asia) UKB
PSS008115 1,761 individuals East Asian China (East Asia) UKB
PSS008116 1,762 individuals East Asian China (East Asia) UKB
PSS008117 1,762 individuals East Asian China (East Asia) UKB
PSS008118 1,762 individuals East Asian China (East Asia) UKB
PSS008119 1,762 individuals East Asian China (East Asia) UKB
PSS008122 1,722 individuals East Asian China (East Asia) UKB
PSS008130 1,761 individuals East Asian China (East Asia) UKB
PSS008131 1,744 individuals East Asian China (East Asia) UKB
PSS009871 6,149 individuals African unspecified UKB
PSS009872 893 individuals East Asian UKB
PSS008137 1,760 individuals East Asian China (East Asia) UKB
PSS009873 42,026 individuals European Non-British European UKB
PSS009874 7,769 individuals South Asian UKB
PSS008142 1,562 individuals East Asian China (East Asia) UKB
PSS008143 1,722 individuals East Asian China (East Asia) UKB
PSS008149 1,722 individuals East Asian China (East Asia) UKB
PSS000290 2,314 individuals European
(French Canadian)
CARTaGENE
PSS000291 39,260 individuals European INTERVAL
PSS000767 5,573 individuals African unspecified UKB
PSS000770 6,687 individuals South Asian UKB
PSS000771 58,196 individuals European
(British)
UKB
PSS008257 6,078 individuals South Asian India (South Asia) UKB
PSS008258 6,078 individuals South Asian India (South Asia) UKB
PSS008279 6,078 individuals South Asian India (South Asia) UKB
PSS008280 6,035 individuals South Asian India (South Asia) UKB
PSS008291 6,078 individuals South Asian India (South Asia) UKB
PSS008292 6,077 individuals South Asian India (South Asia) UKB
PSS008297 5,937 individuals South Asian India (South Asia) UKB
PSS008313 5,923 individuals South Asian India (South Asia) UKB
PSS008314 5,936 individuals South Asian India (South Asia) UKB
PSS008322 4,224 individuals South Asian India (South Asia) UKB
PSS008331 6,078 individuals South Asian India (South Asia) UKB
PSS008334 6,058 individuals South Asian India (South Asia) UKB
PSS008337 6,060 individuals South Asian India (South Asia) UKB
PSS008338 6,060 individuals South Asian India (South Asia) UKB
PSS008339 6,076 individuals South Asian India (South Asia) UKB
PSS008340 6,076 individuals South Asian India (South Asia) UKB
PSS008341 6,078 individuals South Asian India (South Asia) UKB
PSS008342 6,078 individuals South Asian India (South Asia) UKB
PSS008345 5,935 individuals South Asian India (South Asia) UKB
PSS011099 2,770 individuals European
(non-white British ancestry)
UKB
PSS011100 2,768 individuals European
(non-white British ancestry)
UKB
PSS008353 6,056 individuals South Asian India (South Asia) UKB
PSS008354 6,010 individuals South Asian India (South Asia) UKB
PSS011109 2,813 individuals European
(non-white British ancestry)
UKB
PSS011110 2,810 individuals European
(non-white British ancestry)
UKB
PSS011111 1,393 individuals South Asian UKB
PSS008360 6,055 individuals South Asian India (South Asia) UKB
PSS011113 1,433 individuals South Asian UKB
PSS011112 1,428 individuals South Asian UKB
PSS008365 5,483 individuals South Asian India (South Asia) UKB
PSS008367 5,935 individuals South Asian India (South Asia) UKB
PSS008373 5,934 individuals South Asian India (South Asia) UKB
PSS011136 65,932 individuals European
(white British ancestry)
UKB
PSS011137 65,929 individuals European
(white British ancestry)
UKB
PSS011138 65,896 individuals European
(white British ancestry)
UKB
PSS011139 65,814 individuals European
(white British ancestry)
UKB
PSS011140 64,861 individuals European
(white British ancestry)
UKB
PSS011141 64,860 individuals European
(white British ancestry)
UKB
PSS011143 64,816 individuals European
(white British ancestry)
UKB
PSS011144 65,930 individuals European
(white British ancestry)
UKB
PSS011145 65,931 individuals European
(white British ancestry)
UKB
PSS011152 1,124 individuals African unspecified UKB
PSS011153 1,125 individuals African unspecified UKB
PSS011154 1,154 individuals African unspecified UKB
PSS011155 1,157 individuals African unspecified UKB
PSS011166 7,746 individuals East Asian, Other admixed ancestry East Asian, Other admixed ancestry UKB
PSS011167 7,743 individuals East Asian, Other admixed ancestry East Asian, Other admixed ancestry UKB
PSS011168 7,732 individuals East Asian, Other admixed ancestry East Asian, Other admixed ancestry UKB
PSS011169 7,578 individuals East Asian, Other admixed ancestry East Asian, Other admixed ancestry UKB
PSS011170 7,574 individuals East Asian, Other admixed ancestry East Asian, Other admixed ancestry UKB
PSS008925 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS008926 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS008479 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008480 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008501 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008502 1,144 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010726 2,085 individuals,
50.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS008513 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008514 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008519 1,127 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010729 2,950 individuals,
46.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS008535 1,124 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008536 1,128 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008544 676 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010116 5,403 individuals,
0.0 % Male samples
European
(British)
INTERVAL
PSS010117 13,780 individuals,
0.0 % Male samples
European
(British)
INTERVAL
PSS008947 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS008553 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008556 1,150 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010118 21,577 individuals,
100.0 % Male samples
European
(British)
INTERVAL
PSS008948 3,680 individuals African unspecified Nigeria (West Africa) UKB
PSS008559 1,151 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008560 1,149 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008561 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008562 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS000371 Individuals who have been referred to a child psychiatric outpatient clinic in the Northern Netherlands before the age of 11. We measured weight and height using regularly calibrated equipment (scales and stadiometer models 770 and 214, respectively; Seca, Hamburg, Germany). Body mass index (BMI; in kg/m2) was also calculated. We measured waist circumference at the midpoint between the lower costal margin and the iliac crest. The hip circumference was measured over both trochanter majores (tangible bone on the outside of the hip joint). Waist to hip ratio was also calculated. We performed all measurements in duplicate, and, if the difference between these measurements exceeded a predefined value, a third measurement was performed. All available measurements were used to calculate means. Heart rate, systolic (SBP) and diastolic (DBP) blood pressure were measured in duplicate with a Dinamap Critikon 1846SX (Critikon Inc, Tampa, FL), from which we calculated means. At the third visit, fasting blood sample of participants were drawn for the measurement of glucose (Roche Diagnostics, Basel, Switzerland), insulin (Diagnostic Systems Laboratories Inc, Webster, TX), HbA1c (high performance liquid chromatography, Variant, Bio-Rad), triglycerides, total cholesterol, HDL cholesterol (Roche Diagnostics) and LDL cholesterol (calculated according to Friedewald’s equation5), as well as alanine transaminase (Photometric determination according to the reference method of the International Federation of Clinical Chemistry (IFCC)6) and lipoprotein(a) (Nephelometric method, BN2, DadeBehring). Serum creatinine was measured by photometric determination with the Jaffé method without deproteinisation (Ecoline® MEGA, DiaSys Diagnostic Systems GmbH. Merck). eGFR for adolescents who were younger than 18 years old was calculated using the Schwartz formula.7 High‐sensitivity C‐reactive protein (hsCRP) was determined using an immunonephelometric method, BN2 (CardioPhase hsCRP, Siemens) with a lower detection limit of 0.175 mg/L. Total IgE measurements were performed using the Phadia Immunocap 100 system with fluoroenzyme immunoassay (FEIA). 288 individuals,
69.2 % Male samples
Mean = 15.83 years
Sd = 0.6 years
European TRAILS, TRAILSCC TRAILS Clinical Cohort
PSS008563 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008564 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008567 1,127 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS000376 We measured weight and height using regularly calibrated equipment (scales and stadiometer models 770 and 214, respectively; Seca, Hamburg, Germany). Body mass index (BMI; in kg/m2) was also calculated. We measured waist circumference at the midpoint between the lower costal margin and the iliac crest. The hip circumference was measured over both trochanter majores (tangible bone on the outside of the hip joint). Waist to hip ratio was also calculated. We performed all measurements in duplicate, and, if the difference between these measurements exceeded a predefined value, a third measurement was performed. All available measurements were used to calculate means. Heart rate, systolic (SBP) and diastolic (DBP) blood pressure were measured in duplicate with a Dinamap Critikon 1846SX (Critikon Inc, Tampa, FL), from which we calculated means. At the third visit, fasting blood sample of participants were drawn for the measurement of glucose (Roche Diagnostics, Basel, Switzerland), insulin (Diagnostic Systems Laboratories Inc, Webster, TX), HbA1c (high performance liquid chromatography, Variant, Bio-Rad), triglycerides, total cholesterol, HDL cholesterol (Roche Diagnostics) and LDL cholesterol (calculated according to Friedewald’s equation5), as well as alanine transaminase (Photometric determination according to the reference method of the International Federation of Clinical Chemistry (IFCC)6) and lipoprotein(a) (Nephelometric method, BN2, DadeBehring). Serum creatinine was measured by photometric determination with the Jaffé method without deproteinisation (Ecoline® MEGA, DiaSys Diagnostic Systems GmbH. Merck). eGFR for adolescents who were younger than 18 years old was calculated using the Schwartz formula.7 High‐sensitivity C‐reactive protein (hsCRP) was determined using an immunonephelometric method, BN2 (CardioPhase hsCRP, Siemens) with a lower detection limit of 0.175 mg/L. Total IgE measurements were performed using the Phadia Immunocap 100 system with fluoroenzyme immunoassay (FEIA). 1,354 individuals,
47.56 % Male samples
Mean = 16.22 years
Sd = 0.66 years
European TRAILS
PSS010738 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS008575 1,150 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008576 1,144 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008582 1,147 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010741 3,670 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS008587 1,036 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008589 1,127 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010742 3,668 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS008595 1,126 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010743 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010744 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010745 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS008959 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS010747 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS008960 3,709 individuals African unspecified Nigeria (West Africa) UKB
PSS010749 3,574 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010755 3,666 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS008705 6,435 individuals European Italy (South Europe) UKB
PSS008706 6,437 individuals European Italy (South Europe) UKB
PSS008727 6,437 individuals European Italy (South Europe) UKB
PSS008728 6,422 individuals European Italy (South Europe) UKB
PSS008739 6,437 individuals European Italy (South Europe) UKB
PSS008740 6,436 individuals European Italy (South Europe) UKB
PSS010041 581 individuals European
(majority European)
NR LIVER-BIBLE
PSS011242 12,948 individuals South Asian G&H
PSS008745 6,298 individuals European Italy (South Europe) UKB
PSS011258 34,192 individuals European HUNT
PSS008761 6,289 individuals European Italy (South Europe) UKB
PSS008762 6,326 individuals European Italy (South Europe) UKB
PSS008770 3,365 individuals European Italy (South Europe) UKB
PSS011272 86,050 individuals European UKB
PSS008779 6,437 individuals European Italy (South Europe) UKB
PSS008782 6,421 individuals European Italy (South Europe) UKB
PSS008785 6,423 individuals European Italy (South Europe) UKB
PSS008786 6,419 individuals European Italy (South Europe) UKB
PSS008787 6,436 individuals European Italy (South Europe) UKB
PSS008788 6,436 individuals European Italy (South Europe) UKB
PSS008789 6,437 individuals European Italy (South Europe) UKB
PSS008790 6,437 individuals European Italy (South Europe) UKB
PSS010055 22,608 individuals East Asian KBA, KoGES
PSS011286 8,748 individuals South Asian UKB
PSS008793 6,297 individuals European Italy (South Europe) UKB
PSS008801 6,417 individuals European Italy (South Europe) UKB
PSS008802 6,368 individuals European Italy (South Europe) UKB
PSS008808 6,413 individuals European Italy (South Europe) UKB
PSS008813 5,794 individuals European Italy (South Europe) UKB
PSS008815 6,298 individuals European Italy (South Europe) UKB
PSS006891 6,139 individuals African unspecified UKB
PSS006892 1,655 individuals East Asian UKB
PSS006893 24,174 individuals European non-white British ancestry UKB
PSS006894 7,520 individuals South Asian UKB
PSS006895 65,638 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006896 6,139 individuals African unspecified UKB
PSS006897 1,655 individuals East Asian UKB
PSS006898 24,175 individuals European non-white British ancestry UKB
PSS006899 7,520 individuals South Asian UKB
PSS006900 65,638 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006901 6,139 individuals African unspecified UKB
PSS006902 1,655 individuals East Asian UKB
PSS006903 24,175 individuals European non-white British ancestry UKB
PSS006904 7,520 individuals South Asian UKB
PSS006905 65,638 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006921 6,139 individuals African unspecified UKB
PSS006922 1,655 individuals East Asian UKB
PSS006923 24,175 individuals European non-white British ancestry UKB
PSS006924 7,520 individuals South Asian UKB
PSS006925 65,638 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006926 6,139 individuals African unspecified UKB
PSS006927 1,655 individuals East Asian UKB
PSS006928 24,175 individuals European non-white British ancestry UKB
PSS006929 7,520 individuals South Asian UKB
PSS006930 65,638 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006931 6,139 individuals African unspecified UKB
PSS006932 1,655 individuals East Asian UKB
PSS006933 24,175 individuals European non-white British ancestry UKB
PSS006934 7,520 individuals South Asian UKB
PSS006935 65,638 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006936 6,139 individuals African unspecified UKB
PSS006937 1,655 individuals East Asian UKB
PSS006938 24,175 individuals European non-white British ancestry UKB
PSS006939 7,520 individuals South Asian UKB
PSS006940 65,635 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006941 6,139 individuals African unspecified UKB
PSS006942 1,655 individuals East Asian UKB
PSS006943 24,175 individuals European non-white British ancestry UKB
PSS006944 7,520 individuals South Asian UKB
PSS006945 65,638 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006946 6,139 individuals African unspecified UKB
PSS006947 1,655 individuals East Asian UKB
PSS006948 24,175 individuals European non-white British ancestry UKB
PSS006949 7,520 individuals South Asian UKB
PSS006950 65,637 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006951 6,139 individuals African unspecified UKB
PSS006952 1,655 individuals East Asian UKB
PSS006953 24,171 individuals European non-white British ancestry UKB
PSS006954 7,519 individuals South Asian UKB
PSS006955 65,601 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006956 6,139 individuals African unspecified UKB
PSS006957 1,655 individuals East Asian UKB
PSS006958 24,175 individuals European non-white British ancestry UKB
PSS006959 7,520 individuals South Asian UKB
PSS006960 65,636 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006961 6,139 individuals African unspecified UKB
PSS006962 1,655 individuals East Asian UKB
PSS006963 24,171 individuals European non-white British ancestry UKB
PSS006964 7,519 individuals South Asian UKB
PSS006965 65,601 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006966 6,120 individuals African unspecified UKB
PSS006967 1,654 individuals East Asian UKB
PSS006968 24,129 individuals European non-white British ancestry UKB
PSS006969 7,491 individuals South Asian UKB
PSS006970 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006971 6,120 individuals African unspecified UKB
PSS006972 1,654 individuals East Asian UKB
PSS006973 24,129 individuals European non-white British ancestry UKB
PSS006974 7,491 individuals South Asian UKB
PSS006975 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006976 6,120 individuals African unspecified UKB
PSS006977 1,654 individuals East Asian UKB
PSS006978 24,129 individuals European non-white British ancestry UKB
PSS006979 7,491 individuals South Asian UKB
PSS006980 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006981 6,120 individuals African unspecified UKB
PSS006982 1,654 individuals East Asian UKB
PSS006983 24,129 individuals European non-white British ancestry UKB
PSS006984 7,491 individuals South Asian UKB
PSS006985 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006986 6,120 individuals African unspecified UKB
PSS006987 1,654 individuals East Asian UKB
PSS006988 24,129 individuals European non-white British ancestry UKB
PSS006989 7,491 individuals South Asian UKB
PSS006990 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006991 6,120 individuals African unspecified UKB
PSS006992 1,654 individuals East Asian UKB
PSS006993 24,130 individuals European non-white British ancestry UKB
PSS006994 7,491 individuals South Asian UKB
PSS006995 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS006996 6,120 individuals African unspecified UKB
PSS006997 1,654 individuals East Asian UKB
PSS006998 24,130 individuals European non-white British ancestry UKB
PSS006999 7,491 individuals South Asian UKB
PSS007000 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007001 6,120 individuals African unspecified UKB
PSS007002 1,654 individuals East Asian UKB
PSS007003 24,130 individuals European non-white British ancestry UKB
PSS007004 7,491 individuals South Asian UKB
PSS007005 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007006 6,120 individuals African unspecified UKB
PSS007007 1,654 individuals East Asian UKB
PSS007008 24,130 individuals European non-white British ancestry UKB
PSS007009 7,491 individuals South Asian UKB
PSS007010 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007011 6,120 individuals African unspecified UKB
PSS007012 1,654 individuals East Asian UKB
PSS007013 24,130 individuals European non-white British ancestry UKB
PSS007014 7,491 individuals South Asian UKB
PSS007015 65,520 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007016 5,974 individuals African unspecified UKB
PSS007017 1,623 individuals East Asian UKB
PSS007018 23,688 individuals European non-white British ancestry UKB
PSS007019 7,323 individuals South Asian UKB
PSS007020 64,569 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007021 5,974 individuals African unspecified UKB
PSS007022 1,623 individuals East Asian UKB
PSS007023 23,688 individuals European non-white British ancestry UKB
PSS007024 7,323 individuals South Asian UKB
PSS007025 64,570 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007026 5,973 individuals African unspecified UKB
PSS007027 1,623 individuals East Asian UKB
PSS007028 23,687 individuals European non-white British ancestry UKB
PSS007029 7,323 individuals South Asian UKB
PSS007030 64,570 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007031 5,973 individuals African unspecified UKB
PSS007032 1,623 individuals East Asian UKB
PSS007033 23,680 individuals European non-white British ancestry UKB
PSS007034 7,321 individuals South Asian UKB
PSS007035 64,524 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007036 5,974 individuals African unspecified UKB
PSS007037 1,623 individuals East Asian UKB
PSS007038 23,681 individuals European non-white British ancestry UKB
PSS007039 7,321 individuals South Asian UKB
PSS007040 64,524 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007041 5,974 individuals African unspecified UKB
PSS007042 1,623 individuals East Asian UKB
PSS007043 23,681 individuals European non-white British ancestry UKB
PSS007044 7,321 individuals South Asian UKB
PSS007045 64,524 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS008965 3,602 individuals African unspecified Nigeria (West Africa) UKB
PSS008981 3,600 individuals African unspecified Nigeria (West Africa) UKB
PSS008982 2,976 individuals African unspecified Nigeria (West Africa) UKB
PSS008990 2,100 individuals African unspecified Nigeria (West Africa) UKB
PSS011364 56,192 individuals European UKB
PSS008999 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS009002 3,699 individuals African unspecified Nigeria (West Africa) UKB
PSS009005 3,699 individuals African unspecified Nigeria (West Africa) UKB
PSS009006 3,697 individuals African unspecified Nigeria (West Africa) UKB
PSS009007 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS009008 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS009009 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS009010 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS011369 Pregnancy with at least one platelet count measurements in each trimester during pregnancy. If multiple platelet count measurements were available, the earilest platelet count measurements within each trimester was chosen. 818 individuals,
0.0 % Male samples
East Asian
(Chinese)
NIPT PLUS 5,733 Chinese pregnant women underwent non-invasive prenatal PLUS testing.
PSS011370 Pregnancy with at least one platelet count measurements in each trimester during pregnancy. If multiple platelet count measurements were available, the earilest platelet count measurements within each trimester was chosen. 878 individuals,
0.0 % Male samples
East Asian
(Chinese)
NIPT PLUS 5,733 Chinese pregnant women underwent non-invasive prenatal PLUS testing.
PSS009013 3,602 individuals African unspecified Nigeria (West Africa) UKB
PSS011371 Pregnancy with at least one platelet count measurements in each trimester during pregnancy. If multiple platelet count measurements were available, the earilest platelet count measurements within each trimester was chosen. 615 individuals,
0.0 % Male samples
East Asian
(Chinese)
NIPT PLUS 5,733 Chinese pregnant women underwent non-invasive prenatal PLUS testing.
PSS009021 3,695 individuals African unspecified Nigeria (West Africa) UKB
PSS009022 3,663 individuals African unspecified Nigeria (West Africa) UKB
PSS009028 3,681 individuals African unspecified Nigeria (West Africa) UKB
PSS009033 3,404 individuals African unspecified Nigeria (West Africa) UKB
PSS009035 3,602 individuals African unspecified Nigeria (West Africa) UKB
PSS009041 3,601 individuals African unspecified Nigeria (West Africa) UKB
PSS010185 1,115 individuals,
41.1 % Male samples
Mean = 46.18 years Hispanic or Latin American HCHS, SOL
PSS007156 5,219 individuals African unspecified UKB
PSS007157 1,622 individuals East Asian UKB
PSS007158 23,762 individuals European non-white British ancestry UKB
PSS007159 7,345 individuals South Asian UKB
PSS007160 64,432 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007201 5,659 individuals African unspecified UKB
PSS007202 1,474 individuals East Asian UKB
PSS007203 21,730 individuals European non-white British ancestry UKB
PSS007204 6,788 individuals South Asian UKB
PSS007205 59,024 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS009151 4,000 individuals European Poland (NE Europe) UKB
PSS009152 4,002 individuals European Poland (NE Europe) UKB